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ABSTRACT
We investigate a stationary pair-production cascade in the outer magnetosphere of a spinning neutron

star. The charge depletion due to global Ñows of charged particles causes a large electric Ðeld along the
magnetic Ðeld lines. Migratory electrons and/or positrons are accelerated by this Ðeld to radiate curva-
ture gamma rays, some of which collide with the X-rays to materialize as pairs in the gap. The replen-
ished charges partially screen the electric Ðeld, which is self-consistently solved together with the
distribution functions of particles and gamma rays. If no current is injected at either of the boundaries of
the accelerator, the gap is located around the conventional null surface, where the local Goldreich-Julian
charge density vanishes. However, we Ðrst Ðnd that the gap position shifts outward (or inward) when
particles are injected at the inner (or outer) boundary. Applying the theory to the Crab pulsar, we
demonstrate that the pulsed TeV Ñux does not exceed the observational upper limit for moderate infra-
red photon density and that the gap should be located near to or outside of the conventional null
surface so that the observed spectrum of pulsed GeV Ñuxes may be emitted via a curvature process.
Some implications of the existence of a solution for a super Goldreich-Julian current are discussed.
Subject headings : gamma rays : observations È gamma rays : theory È magnetic Ðelds È

pulsars : individual (Crab Pulsar) È X-rays : galaxies

1. INTRODUCTION

The EGRET experiment on the Compton Gamma Ray
Observatory has detected pulsed signals from seven
rotation-powered pulsars (e.g., for Crab, Nolan et al. 1993 ;
Fierro et al. 1998). The modulation of the c-ray light curves
at GeV energies testiÐes to the production of c-ray radiation
in the pulsar magnetospheres either at the polar cap
(Harding, Tademaru, & Esposito 1978 ; Daugherty &
Harding 1982, 1996 ; Sturner, Dermer, & Michel 1995 ;
Shibata, Miyazaki, & Takahara 1998) or at the vacuum
gaps in the outer magnetosphere (Cheng, Ho, & Ruderman
1986a, 1986b ; Chiang & Romani 1992, 1994 ; Romani &
Yadigaroglu 1995 ; Romani 1996 ; Zhang & Cheng 1997 ;
ZC97). E†ective c-ray production in a pulsar magneto-
sphere may be extended to the very high energy (VHE)
region above 100 GeV as well ; however, the predictions
of Ñuxes by the current models of c-ray pulsars are not
sufficiently conclusive. Whether or not the spectra of
c-ray pulsars continue up to the VHE region is a question
that remains one of the interesting issues of high-energy
astrophysics.

In the VHE region, positive detections of radiation at a
high conÐdence level have been reported from the direction
of the Crab pulsar (Nel et al. 1993). However, as for pulsed
TeV radiation, only the upper limits, as a rule, have been
obtained (Akerlof et al. 1993 ; Borione et al. 1997 ; Sriniva-
san et al. 1997 ; Yoshikoshi et al. 1997 ; Sako et al. 2000). If
the VHE emission originates in the pulsar magnetosphere, a
signiÐcant fraction of it can be expected to show pulsation.
Therefore, the lack of pulsed TeV emissions provides a
severe constraint on the modeling of particle acceleration
zones in a pulsar magnetosphere.

In fact, in the picture provided by Cheng et al. (1986a,
1986b), the magnetosphere should be optically thick for pair
production in order to reduce the TeV Ñux to an unob-
served level by absorption. This in turn requires very high
luminosities of infrared photons. However, the required IR
Ñuxes are generally orders of magnitude larger than the
observed values (Usov 1994). We are therefore motivated by
the need to contrive an outer gap model that produces less
TeV emission with a moderate infrared luminosity.

High-energy emission from a pulsar magnetosphere, in
fact, crucially depends on the acceleration electric Ðeld, E

A
,

along the magnetic Ðeld lines. It was Hirotani & Shibata
(1999a, 1999b, 1999c ; hereafter Papers I, II, III) and Hiro-
tani (2000b, hereafter Paper VI) who Ðrst considered the
spatial distribution of together with particle and c-rayE

Adistribution functions. By solving these Vlasov equations,
they demonstrated that a stationary gap is formed around
the conventional null surface at which the local Goldreich-
Julian charge density,

oGJ \ [)B
z

2nc
, (1)

vanishes, where is the component of the magnetic ÐeldB
zalong the rotation axis, ) the angular frequency of the

neutron star, and c the speed of light. Equation (1) is valid
unless the gap is located close to the light cylinder, of which
distance from the rotation axis is given by The-LC \ c/).
electrodynamic model developed in this paper is basically
the same as that of Paper VI. However, we Ðnd an inter-
esting behavior of the gap position by relaxing the bound-
ary conditions to allow electric current injection through
the inner or the outer boundaries of the gap.
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Subsequently, Hirotani (2000a, hereafter Paper IV; 2001,
Paper V) considered the ““ gap closure condition ÏÏ so that a
gap may maintain a stationary pair-production cascade. In
this paper, this closure condition is generalized into the case
in which the currents are injected through the boundaries.

In the next two sections, we describe the physical pro-
cesses of pair-production cascade and the resultant c-ray
emission. We then apply the theory to the Crab pulsar and
present the expected c-ray spectra in ° 5. In the Ðnal section,
we discuss the possibility of a gap formation for a super
Goldreich-Julian current.

2. ANALYTIC EXAMINATION OF THE GAP POSITION

Let us Ðrst consider the gap position analytically when
there is a current injection into the gap. We consider the
particle continuity equations in ° 2.1 and the c-ray Boltz-
mann equations in ° 2.2.

2.1. Particle Continuity Equations
Under the monoenergetic approximation, we simply

assume that the electrostatic and the curvatureÈradiation-
reaction forces cancel each other in the Boltzmann equa-
tions of particles. Then the spatial number density of the
outwardly and inwardly propagating particles, andN

`
(s)

at distance s from the neutron-star surface along theN~(s),
last-open Ðeld line, obey the following continuity equations :

LN
B

Lt
] ¿ Æ LN

B
Lx

\ Q(x) , (2)

where

Q(x)4
1
c
P
0

=
dvc[gp`G

`
] gp~G~] ; (3)

and refer to the distribution functions ofG
`
(x, vc) G~(x, vc)outwardly and inwardly propagating c-ray photons, respec-

tively, having energy The pair-production rate forme c2vc.an outwardly propagating (or inwardly propagating) c-ray
photon to materialize as a pair per unit time is expressed by

(or For charge deÐniteness, we consider that agp` gp~).
positive electric Ðeld arises in the gap. In this case, (orN

`represents the number densities of positrons (orN~)
electrons).

The particle velocity at position (r, h) becomes (eq. [21]
in Paper VI)

¿ \ ¿p]
A
r) sin h ] iBÕ[ cE

A

BÕ
B2
B

eÕ , (4)

where i is a constant and refers to the azimuthal uniteÕvector. In the parentheses, the term r) sin h is caused by
corotation, while is caused by magnetic bending. SinceiBÕarises in the gap, the corresponding drift velocityE
Aappears as Unless the gap is located close to[cE

A
BÕ/B2.

the light cylinder, we can neglect the terms containing asBÕa Ðrst-order approximation. We thus have

¿B ¿p ] r) sin heÕ . (5)

Imposing a stationarity condition

[L
t
] (r) sin h)LÕ]NB

\ 0 , (6)

reminding that the projected velocity on the poloidal plane
is and utilizing we¿p\ c cos 'Bp/Bp, divBp B divB \ 0,

obtain

^ B
L
Ls
AN

B
B
B

\ 1
c cos '

P
0

=
dvc[gp`G

`
] gp~G~] , (7)

where ' refers to the projection angle of the particle three-
dimensional motion onto the poloidal plane. It is deÐned by

where is the distance of the'\ arcsin (rcnt ) sin h/c), rcntgap center from the star center. The pair-production rate
per unit of time by a single c-ray photon, is deÐned asgpB,

gpB(vc) \ (1[ kc)c
P
vth

=
dvx

dNx
dvx

pp(vc, vx, kc) , (8)

where is the pair-production cross section andpp cos~1 kcrefers to the collision angle between the c-rays and the
X-rays (see Paper VI for more details about eq. [8]) ; vth4

The adopted value of will be detailed in2/[(1[ kc)vc]. kc
° 5.2. The quantity refers to the X-ray energy in the unitvxof me c2.

Although is adopted after ° 3.1, in this section we'D 0
simply neglect the projection e†ect of the poloidal velocity
and put '\ 0. Then equation (7) gives

^B
d
ds
AN

B
B
B

\ 1
jp

P
0

=
dvc(G`

] G~) , (9)

where and refer to the distribution func-G
`
(s, vc) G~(s, vc)tions of the outwardly and inwardly propagating c-rays ; the

mean free path is deÐned byjp

jp4
1
c

/0= gp`G
`

dvc
/0= G

`
dvc

. (10)

Since is justiÐed for the Crab pulsar (Paper V), weW > -LCregard to be constant in the gap in this section.jp
2.2. Boltzmann Equations for Gamma Rays

Unlike the charged particles, c-rays do not propagate
along the magnetic Ðeld line at each point because they
preserve the directional information where they were
emitted. However, to avoid complications, we simply
assume that the outwardly (or inwardly) propagating c-rays
dilate (or constrict) at the same rate with the magnetic Ðeld.
This assumption gives a good estimate when W > -LCholds. We then obtain (Paper VI)

^B
L
Ls
AG

B
B
B

\ [ gpB
c cos '

G
B

] gc
c cos '

N
B

, (11)

where (e.g., Rybicki & Lightman 1979)

gc 4
J3e2!

hRC

1
vc

F
Avc
vc

B
, (12)

vc 4
1

me c2
3
4n

hc!3
RC

, (13)

F(s) 4 s
P
x

=
K5@3(t)dt ; (14)

is the curvature radius of the magnetic Ðeld lines andRC is the modiÐed Bessel function of 5/3 order. The e†ectK5@3of the broad spectrum of curvature c-rays is represented by
the factor in equation (12).F(vc/vc)Noting that the absorption caused by pair production is
negligible compared with the curvature emission term on
the right-hand side of equation (11), and putting '\ 0
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again, we obtain

^ L
Ls
C1
B

G
B
(s, vc)

D
\ gc(vc)

c
N

B
(s)

B
. (15)

Integrating equation (15) over and combining with equa-vc,tion (9), we obtain

^ d2
ds2
AN

B
B
B

\ 1
jp c

N
`

[ N~
B

P
b0

bN
gc(vc)dvc , (16)

where is the upper cuto† dimensionless c-ray energy. Inb
Nthe present paper, we set (see ° 3.1).b

N
\ b9\ 105.5

One combination of the two independent equations that
constitute(16) yields the conserved current per magnetic Ñux
tube,

)
2n

jtot \ ce
N

`
(s)] N~(s)

B(s)
. (17)

If the conserved current density becomes itsjtot \ 1.0,
Goldreich-Julian value. Another combination of the equa-
tions that constitute (16) gives

d2
ds2
AN

`
[ N~
B

B
\ 4Nc

jp

N
`

[ N~
B

, (18)

where

Nc 4
W /2

c
P
b0

bN
gc(vc)dvc (19)

refers to the expectation value of the number of c-rays
emitted by a single particle that runs a typical length W /2 in
the gap.

In a stationary gap, the pair-production optical depth,
must equal the expectation value for a c-ray toW /jp,materialize with the gap, We thus obtain theNc~1( jgap/jtot).following condition :

W \ jp
Nc

jgap
jtot

, (20)

which is automatically satisÐed by the stationary Vlasov
equations. Here, the dimensionless current density, jgap,created in the gap is deÐned by

)
2nce

jgap4
N

`
(s2)

B(s2)
[ N

`
(s1)

B(s1)

\N~(s1)
B(s1)

[ N~(s2)
B(s2)

, (21)

where and designate the position of the inner and thes1 s2outer boundaries, respectively. That is, Equa-W \ s2[ s1.tion (20) corresponds to a generalized version of the gap
closure condition considered in Papers IV and V (e.g.,
eq. [30] in Paper V), in which and, hence,j1\ j2\ 0 jgap\

was assumed. When there is a current injection (i.e.,jtotwhen or is nonvanishing), not only the produced par-j1 j2ticles in the gap but also the injected particles contribute to
the c-ray emission. Therefore, the gap width is adjusted
smaller compared with the case by the factorj1 \ j2\ 0

Utilizing condition (20), we can rewrite equationjgap/jtot.

(18) into the form

d2
ds2
AN

`
[ N~
B

B
\ 4

jtot
jgap

1
W

N
`

[ N~
B

. (22)

To solve the di†erential equation (22), we impose the
following two boundary conditions :

ce
N

`
(s1)

B(s1)
\ )

2n
j1 , (23)

ce
N~(s2)
B(s2)

\ )
2n

j2 . (24)

With the aid of equation (21), these two boundary condi-
tions give

N
`

[ N~
B

\ [ )
2n

( jgap[ j1] j2) (25)

at ands \ s1,

N
`

[ N~
B

\ )
2n

( jgap] j1[ j2) (26)

at It follows from equation (22)s \ s2.

N
`

[ N~
B

\ )
2nce

C
jgap

sinh yJ( jtot/jgap) (s [ scnt/W /2)z

sinh yJ( jtot/jgap)z
D

]
C
( j1[ j2)

cosh yJ( jtot/jgap) (s [ scnt/W /2)z

cosh yJ( jtot/jgap)z
D

,

(27)

where the gap center position is deÐned by

scnt 4
s2[ s1

2
. (28)

2.3. Poisson Equation
The real charge density which is given bye(N

`
[ N~),

equation (27), appears in the Poisson equation for the non-
corotational potential (. Neglecting relativistic e†ects, and
assuming that typical transÐeld thickness of the gap, isD

M
,

greater than or comparable with W , we can reduce the
Poisson equation into the one-dimensional form (Paper VI ;
see also ° 2 in Michel 1974)

[+2( \ 4n
C
e(N

`
[ N~) ])B

z
2nc
D

, (29)

where e designates the magnitude of the charge on an elec-
tron. Substituting equation (27) into (29), we obtain

[+2( \ 2B)
c
C

jgap fodd
As [ scnt

W /2
B

]( j1[ j2) feven
As [ scnt

W /2
B

] B
z

B
D

, (30)

where

fodd(x) 4
sinh yJ( jtot/jgap) xz

sinh yJ( jtot/jgap)z
(31)
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and

feven(x)4
cosh yJ( jtot/jgap) xz

cosh yJ( jtot/jgap)z
. (32)

There are essentially three assumptions that are used to
derive equations (30), (31), and (32) : the radiation-reaction
forces exactly cancel with the electrostatic force in the par-
ticlesÏ Boltzmann equations ; which maygp`(vc)\ gp~(vc),be justiÐed for a power-law, magnetospheric X-ray com-
ponent ; and the Poisson equation is analyzed one-
dimensionally along the magnetic Ðeld line.

2.4. Generalization of the Null Surface
To examine the Poisson equation (30) analytically, we

assume that the transÐeld thickness of the gap is greater
than W and replace +2( with d2(/ds2. Furthermore, we
neglect the current created in the gap and simply set
jgap\ 0.

First, consider the case when a current injects from
neither of the boundaries, that is, It follows thatj1\ j2\ 0.
the derivative of the acceleration Ðeld (i.e., [d2(/ds2) van-
ishes at the conventional null surface where vanishes. WeB

zmay notice that [d2(/ds2 is positive at the inner part of
the gap and changes its sign near the gap center to(s \ scnt)become negative at the outer part of the gap. Therefore, we
can conclude that the gap is located (or centers) around the
conventional null surface, if there is no current injection
from outside.

Second, consider the case when a current is injected at the
inner boundary (at and holds. Since thes \ s1) j1[ j2[ 0
function is positive at arbitrary s, the gap center isfevenlocated at a place where is negative, that is, outside of theB

zconventional null surface. In particular, when j1[ j2D 1
holds, [d2(/ds2 vanishes at the place where In aB

z
D[B.

vacuum, static dipole Ðeld, is realized along theB
z
D [B

last-open Ðeld line at the light cylinder. Therefore, the gap is
expected to shift toward the light cylinder, if the injected
current density at the inner boundary approaches the
Goldreich-Julian value. We may notice here that is lessfeventhan unity because does not exceed W /2.o s [ scnt oThird and Ðnally, consider the case when j1[ j2D [1
holds. In this case, [d2(/ds2 vanishes at the place where

Therefore, the gap is expected to be located close toB
z
DB.

the star surface, if a Goldreich-Julian current density is
injected at the outer boundary. In what follows, we will
examine more accurately these predictions on the gap posi-
tion versus current injection by solving the Vlasov equa-
tions (7), (11), and (30) numerically.

3. BASIC EQUATIONS AND BOUNDARY CONDITIONS

In this paper, we assume that the transÐeld thickness, D
M
,

of the gap is much greater than W and neglect the transÐeld
derivatives in the Poisson equation (29). We consider that
this one-dimensional analysis could be justiÐed because

is required so that the predicted GeV Ñux may beD
M

D 6W
consistent with the EGRET observations (° 5.3.1). We
rewrite the Vlasov equations into the suitable forms for
numerical analysis in ° 3.1 and impose boundary conditions
in ° 3.2.

3.1. One-dimensional V lasov Equations
As will be shown at the end of this section, it is convenient

to introduce the typical Debye scale length c/up,

up \
S4ne2

me

)Bcnt
2nce

, (33)

where represents the magnetic Ðeld strength at the gapBcntcenter. The dimensionless coordinate variable then becomes

m 4 (up/c)s . (34)

By using such dimensionless quantities, we can rewrite the
Poisson equation into

E
A

\ [ dt
dm

, (35)

dE
A

dm
\ B(m)

Bcnt
[n

`
(m) [ n~(m)]] B

z
(m)

Bcnt
, (36)

where the particle densities per unitt(m) 4 e((s)/(me c2) ;
Ñux tube are deÐned by

n
B
(m) 4

2nce
)

N
B

B
. (37)

We evaluate at each point along the last-open Ðeld lineB
z
/B

by using the Newtonian dipole Ðeld.
Let us introduce the following dimensionless c-ray den-

sities in the dimensionless energy interval between andb
i~1b

i
:

g
B
i (m) 4

2nce
)Bcnt

P
bi~1

bi
dvc G

B
(s, vc) . (38)

In this paper, we set which corresponds to theb0\ 102,
lowest c-ray energy, 51.1 MeV. We divide the c-ray spectra
into nine energy bins and put b1\ 102.5, b2\ 103, b3\
103.5, andb4\ 104, b5\ 104.5, b6\ 104.75, b7 \ 105.

andb8\ 105.25, b9 \ 105.5.
We can now rewrite the continuity equation (7) of par-

ticles into

dn
B

dm
\ ^ Bcnt

B cos '
;
i/1

9
[gp` ig

`
i (m) ] gp~ ig~i (m)] , (39)

where the magnetic Ðeld strength, B, is evaluated at each m.
The dimensionless redistribution functions are evalu-gpBiated at the central energy in each bin as

gpBi 4
1
up

gpB
Abi~1 ] bi

2
B

. (40)

A combination of the equations in (39) gives the current
conservation law,

jtot 4 n
`

(m) ] n~(m) \ constant for m , (41)

which is equivalent with equation (17).
The Boltzmann equations in (11) for the c-rays are inte-

grated over between dimensionless energies andvc bi~1 bito become

d
dm

g
B
i \ d

dm
(lnB) <

gpBi
cos '

g
B
i ^ gci B(m)

Bcnt cos '
n
B

, (42)

where i \ 1, 2, . . . , m (m\ 9) and

gci 4
J3e2!
up hRc

P
bi~1@vc

bi@vc
ds
P
s

=
K5@3(t)dt (43)

is dimensionless.
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Equating the electric force e o d(/dx o and the radiation
reaction force, we obtain the saturated Lorentz factor at
each point as

!sat \
A3Rc 2

2e
K d(

ds
K
] 1
B1@4

; (44)

we compute the curvature radius at each point for aRcNewtonian dipole magnetic Ðeld. Since the maximum of
o d(/dx o and the potential drop are roughly proportional
to W 2 and W 3, respectively (Paper V), the particles become
unsaturated for very small W . To avoid an overestimation
of the Lorentz factor in such cases, we compute ! by

1
!

\
S 1

!sat 2
] 1

t2(m2)
, (45)

where represents the maximum attainable Lorentzt(m2)factor.

3.2. Boundary Conditions
We now consider the boundary conditions to solve the

Vlasov equations (35), (36), (39), and (42). At the inner
(starward) boundary we impose (Paper VI)(m \ m1),

E
A
(m1)\ 0 , (46)

t(m1)\ 0 , (47)

g
`
i (m1)\ 0 (i\ 1, 2, . . . , 9) . (48)

It is noteworthy that condition (46) is consistent with the
stability condition at the plasma-vacuum interface if the
electrically supported magnetospheric plasma is completely
charge-separated, i.e., if the plasma cloud at is com-m \ m1posed of electrons alone (Krause-Polstor† & Michel 1985a,
1985b ; Michel 1991). We assume that the Goldreich-Julian
plasma gap boundary is stable with on the bound-E

A
\ 0

ary, m \ m1.
Since positrons may Ñow into the gap at as a partm \ m1of the global current pattern in the magnetosphere, we

denote the positronic current per unit Ñux tube at asm \ m1
n
`
(m1)\ j1 , (49)

which yields (eq. [41])

n~(m1)\ jtot[ j1 . (50)

At the outer boundary we impose(m \ m2),
E

A
(m2)\ 0 , (51)

g~i (m2)\ 0 (i\ 1, 2, . . . , 9) , (52)

n~(m2)\ j2 . (53)

Conditions (49) and (53) are equivalent with (23) and (24).
The current density created in the gap per unit Ñux tube

can be expressed as

jgap\ jtot [ j1[ j2 . (54)

This equation is, of course, consistent with equation (21).
We adopt and as the free parameters.jgap, j1, j2We have a total of 24 boundary conditions (46)È(53) for
22 unknown functions (, (i\ 1, 2, . . . , 9). Thus,E

A
, n

B
, g

B
i

two extra boundary conditions must be compensated by
making the positions of the boundaries and be free.m1 m2The two free boundaries appear because is imposedE

A
\ 0

at both the boundaries and because is externallyjgap

imposed. In other words, the gap boundaries and(m1 m2)shift, if and/or varies.j1 j2Let us brieÑy comment on the convenience of the intro-
duction of the dimensionless coordinates and variables. It
follows from the Vlasov equations (35), (36), (39), and (42)
that the solutions m, t, and are unchanged if B,E

A
, n

B
, g

B
i

and are invariant. Consider the case when the nor-gpBi , gcimalization of is doubled. In this case, equations (8)dNx/dvxand (40) show that is invariant if we also double Notegpi up.that in equation (43) is proportional to (eq.vc up3@4Rc1@2[13]), where is used. It follows!D !sat P Rc1@2 o d(/ds o1@4
that is also invariant if we increase by 2~3@2 times. Itvc Rcshould be noted that (eq. [43]) is invariant by this changegciof parameters. On these grounds, we can reduce one degree
of freedom in the free parameters.

4. PREDICTED GAMMA-RAY FLUX

In this section, we detail the method for computing the
spectrum in GeV energies in ° 4.1 and in TeV energies inlFl

° 4.2.

4.1. GeV Spectra
The GeV spectra of outwardly and inwardly propagating

c-rays are obtained from and At position m,g
`
i (m2) g~i (m1).the c-ray emission rate becomes

c[ ray Ñux \ Acr(m) c
)Bcnt
2nce

g
B
i (m) s~1 , (55)

where refers to the cross section of the gap at m. Multi-Acrplying the mean c-ray energy on equationJb ibi~1 me c2,
(55), dividing it by and further dividing by the*)GeV d2,
frequency interval we obtain the Ñuxme c2(bi[ bi~1)/h,
density, here, is the emission solid angle, and h isFl ; *)GeVthe Planck constant. We thus obtain the GeV Ñux

lFl\
bibi~1

bi[ bi~1
me c2

)Bcnt
2ne

Acr gBi
*)GeV d2 . (56)

To compute the c-ray Ñux emitted outwardly (or inwardly)
from the gap, we adopt the plus (or the minus) sign in g

Band evaluate at (or As will be shown inAcr g` m \ m2 m1).
° 5.3, holds for the Crab pulsar. We thus simplyW > -LCapply the same cross section for both the outwardly and
inwardly emitted c-rays and put where shouldAcr\ D

M
2 , D

Mbe greater than or at least comparable with W for the one-
dimensional approximation of the Poisson equation (29) to
be justiÐed.

It is noteworthy that the particles lose most of their
energy in the gap if holds, where refers to thelacc > W lacclength scale for particles to be accelerated to the saturated
Lorentz factor (eq. [44]). That is, we can neglect the primary
luminosity emitted by the particles running outside of the
gap, compared with that emitted by the particles running
inside of the gap, if Since the monoenergeticlacc > W .
approximation of the particle motion (° 2.1) is justiÐed when

the neglect of GeV emission by the particleslacc > W ,
running outside of the gap is consistent with the mono-
energetic approximation. We thus compute the GeV lumi-
nosity from the solved c-ray distribution functions g

`
i (m2)and g~i (m1).

4.2. TeV Spectra
Once the electrodynamic structure of the gap is solved,

we can further compute the upscattered c-ray Ñux emitted
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from the whole accelerator, if additionally given the infrared
photon Ðeld. This treatment is justiÐed unless the upscat-
tered, TeV luminosity exceeds the curvature-radiated, GeV
one.

If an electron or a positron is migrating with Lorentz
factor !? 1 in an isotropic photon Ðeld, it upscatters the
soft photons to produce the following number spectrum of
c-rays (Blumenthal & Gould 1970) :

dN
dtdvc

\ 3
4

pT
c

!2
dNIR
dvIR

dvIR
vIR

]
C
2q ln q ] (1] 2q)(1[ q)] (Qq)2(1[ q)

2(1 ] Qq)
D

, (57)

where refers to theQ4 4vIR!, q 4 vc/Q(![ vc), dNIR/dvIRIR photon density per unit dimensionless energy interval
between and is the Thomson cross section ;vIR vIR ] dvIR, pTand are the energies of the IR and the upscatteredvIR vcphotons in units of Equation (57) is valid if the reso-me c2.
nance e†ects are negligible, that is, B> Bcrit\ 4.4] 1013
G. This inequality is satisÐed except for the polar cap. The
Ñux density of the upscattered photons becomes

Fl \ Ne
*)TeV d2 É hvc

P
vIR,min

vIR,max dN
dt dvc dvIR

dvIR , (58)

where refers to the emission solid angle of the upscat-*)TeVtered photons. In this paper, we estimate withNe

Ne \ ( jgap] j1)
)Bcnt
2nce

W D
M
2 (59)

to compute the outwardly propagating TeV Ñux, which are
emitted by outwardly propagating particles (i.e., positrons)
and with

Ne \ ( jgap] j2)
)Bcnt
2nce

W D
M
2 (60)

to compute the inwardly propagating TeV Ñux, which are
emitted by inwardly propagating particles (i.e., electrons).

Multiplying the c-ray frequency on the Ñuxvcme c2/h Fldensity (eq. [58]), we obtain the upscattered Ñux

lFl\ ( jgap] ja)me c2 )Bcnt
2ne

Acr
*)TeV d2 vc2

]W
P
vIR,min

vIR,max dN
cdt dvc dvIR

dvIR , (61)

where (or for outwardly (or inwardly) emittedja \ j1 j2)
c-rays. As the emission solid angles, we assume

*)GeV\ *)TeV\ 2nW
-LC

(62)

in this paper.
We also consider the extrinsic absorption of the TeV

photons outside of the gap. For a homogeneous and iso-
tropic IR Ðeld, the optical depth becomes

q(vc)\
-LC
2
P
vIR,min

vIR,max dNIR
dvIR

pp(vIR, vc, kc)dvIR , (63)

where the path length is assumed to be We apply the-LC/2.
same path length for all the cases considered so that the
extrinsic absorption may work equally.

5. APPLICATION TO THE CRAB PULSAR

5.1. Input Infrared Field
Consider the case when the IR spectrum is homogeneous

and expressed by a single power law,

dNIR
dvIR

\ N0 vIRa , (64)

where and a are spatially constant. For an isotropicN0Ðeld, the speciÐc intensity becomes

Il \ c
4n

hN0 vIRa`1 . (65)

Assuming that this uniform sphere has radius we-LC,obtain the following Ñux density at distance d :

Fl \ c
4
A-LC

d
B2

hN0 vIR a`1

\ 4.5] 10~20)2 ~2
A d
kpc
B~2

N0 vIR a`1Jy . (66)

As the lower and upper cuto† IR photon energies, we adopt
and wherevIR, min \ 10~8 vIR, max \ 10~6, vIR, min \

vIR\ vIR, max .
Because the pulsed Ñux around eV energies is difficult to

observe, we consider the following two cases for the set of
and a :N0

Case A.ÈWe assume that the IR spectra below vIR\
10~6 (or equivalently, below 1.23] 1014 Hz) are optically
thick for synchrotron self-absorption and adopt a \ 1.5.
Setting mJy at which is consistent withFl\ 3 vIR\ 10~6,
near-IR and optical observations (Eikenberry et al. 1997),
we obtain cm~3.N0\ 2.3] 1032

Case B.ÈInterpolating the phase-averaged color spec-
trum in UV, U, B, V , R (Percival et al. 1993), J, H, K
(Eikenberry et al. 1997) bands, and the radio observation at
8.4 GHz (Mo†ett & Hankins 1996), we obtain N0\ 1.5
] 1017 cm~3 and a \ [0.88. In Figure 1, we present the
Ðtted spectrum with the solid line ; the ordinate is in JylFlHz.

FIG. 1.ÈSingle power-law Ðt of phase-averaged color spectrum of the
Crab pulsar (case B, see ° 5.1). The abscissa is the photon frequency in Hz,
while the ordinate is the photon Ñux in Jy Hz.
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5.2. Input X-Ray Field
HEAO 1 observations revealed that the X-ray spectrum

in the primary pulse phase is expressed by

dNpl
dvx

\ Npl vxa (vmin\ vx \ vmax) , (67)

with a \ [1.81 and Npl\ 5.3] 1015(d/kpc)2(rcnt/-LC)~2
(Knight 1982). We adopt keV/511 keV andvmin\ 0.1

keV/511 keV. Unlike the IR Ðeld, which isvmax\ 50
assumed to be homogeneous within radius we suppose-LC,that the X-rays are emitted near to the gap. In this case, the
X-ray density computed from the observed Ñux will increase
as the gap is located close to the star. To consider such
e†ects, we simply assume that the X-ray density is pro-
portional to the inverse square of rcnt.The angle dependence of the speciÐc intensity of the
X-ray Ðeld is considered in the collision angle, (eq. [8], orkc[40]). In the case of the Crab pulsar, the X-ray Ðeld is
dominated by a power-law component, which is probably
emitted near the outer gap accelerator rather than from the
neutron star surface. We thus simply evaluate the cosine of
the collision angles as

kc\ cos (W /-LC) (68)

for both inwardly and outwardly propagating c-rays. Aber-
ration of light is not important for this component because
both the X-rays and the c-rays are emitted nearly at the
same place. We may notice here that this is a rough estimate
of and that strongly depends on ifkc vth\ 2/[(1 [ kc)vc] kc(i.e., if In the case of the Crab pulsar,W > -LC 1 [ kc> 1).

holds (see Fig. 2) ; therefore, the true resultsW /-LCD 0.05
will depend on the detailed beaming geometry of the sec-
ondary X-rays, which are emitted outside of the gap along
local magnetic Ðeld lines via the synchrotron process.
However, to inquire into this matter would lead us to into
that specialized area of the magnetic Ðeld conÐguration
close to the light cylinder. Such a digression would
undoubtedly obscure the outline of our argument.

5.3. Results
Let us now substitute the X-ray Ðeld into equation (8)

and solve the Vlasov equations by the method described in
° 2. It should be noted that we do not use the IR spectrum
considered in ° 5.1 to solve and they areE

A
(m), n

B
(m), g

B
i(m) ;

necessary when we consider the TeV emission caused by
inverse Compton scatterings.

In Paper I, it is argued that the inverse Compton scat-
terings dominate the curvature radiation in the outer gap in
the Crab pulsar magnetosphere if we adopt kc\ 0.
However, in the present paper, we consider that the colli-
sion angles are much smaller than 90¡ and adopt kc \

In this case, unless the gap is located wellcos (W /-LC).inside of the conventional null surface, curvature radiation
becomes the primary process in c-ray emission and, hence,
in the radiation-reaction forces. The rotational frequency
and the magnetic moment are )\ 188.1 rad s~1 and

G cm3.km\ 3.38 ] 1030

5.3.1. Electric Field Structure

To reveal the spatial distribution of the acceleration Ðeld,
we consider four representative boundary conditions :

Case 1. solid curves.( j1, j2) \ (0, 0)]
Case 2. dashed curves.( j1, j2) \ (0.3, 0)]
Case 3. dash-dotted curves.( j1, j2) \ (0.6, 0)]
Case 4. dotted curves.( j1, j2) \ (0, 0.3)]

That is, for case 2 (or case 4), the positronic (or electronic)
current density Ñowing into the gap per unit Ñux tube at the
inner (or outer) boundary is 30% of the typical Goldreich-
Julian value, )/2n. We Ðx for all four casesjgap\ 0.01
because the solution forms a ““ brim ÏÏ and ceases to exist
(Fig. 2 in Hirotani & Okamoto 1998) if exceeds a fewjgappercent. In what follows, we adopt 45¡ as the magnetic
inclination, which is necessary to compute B at each point
for the Newtonian dipole Ðeld. Since the X-ray Ðeld is domi-
nated by a power-law component, the inclination does not
a†ectkc.The results of for the four cases are presented inE

A
(m)

Figure 2. The abscissa designates the distance along the
last-open Ðeld line and covers the range from the neutron
star surface (s \ 0) to the position where the distance equals

m.s \ 1.2-LC\ 1.91 ] 106
The solid curve (case 1) shows that the gap is located

around the conventional null surface. However, the gap
shifts outward as increases, as the dashed (case 2) andj1dash-dotted (case 3) curves indicate.

On the other hand, when increases, the gap shiftsj2inward and the potential drop, reduces signiÐcantly.((s2),For example, we obtain V for case 4,((s2) \ 7.1] 1012
whereas 1.7] 1013 V for case 2. A detailed physical inter-
pretation is given in ° 6.1.

5.3.2. Gamma-Ray Spectra

We compute the GeV and TeV spectrum by the method
described in ° 4. We adopt the cross-sectional area of

for all the cases to be considered so that theD
M
2\ (6W )2

GeV Ñux in cases 1 and 2 may be consistent with obser-
vations. If increases twice, both the GeV and TeV ÑuxesD

Mincrease four times.
First, we consider case A, in which the IR spectrum is

approximated by synchrotron self-absorption (SSA)
with turnover frequency D 1.2] 1014 Hz. In this case, the

FIG. 2.ÈDistribution of for the Crab pulsar with theE
A
(s) ai\ 45¡ ;

abscissa is in meters. The solid, dashed, dash-dotted, and dotted curves
correspond to cases 1, 2, 3, and 4, respectively (see text).
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pair-production optical depth q computed from equation
(63) becomes as presented in Figure 3. This result indicates
that the TeV Ñux is signiÐcantly absorbed above 1 TeV.

For the four di†erent boundary conditions (cases 1, 2, 3,
and 4), we present the spectra of the outwardly and
inwardly propagating c-rays in Figures 4 and 5, respec-
tively. In GeV energies, the observational pulsed spectrum
is obtained by EGRET observations (open circles ; Nolan et
al. 1993), while in TeV energies, only the upper limits are
obtained by Whipple observations (open squares ; Weekes et
al. 1989 ; Reynolds et al. 1993 ; Goret et al. 1993 ; Hillas et al.
1998 ; Lessard et al. 2000), Durham observations (open tri-
angles ; Dowthwaite et al. 1984), and CELESTE obser-
vations (open square at 60 GeV; J. Holder 2001, private
communication). The Ðlled circles denote the unpulsed Ñux
obtained by CANGAROO observations (Tanimori et al.
1998).

It follows from Figures 4 and 5 that the TeV Ñux is unde-
tectable except for hlD 10 TeV. Around 10 TeV, the c-ray
Ñux is slightly less than or comparable with the obser-

FIG. 3.ÈPair-production optical depth for the IR Ðeld represented by
SSA spectrum (case A).

FIG. 4.ÈSpectra of the outwardly propagating c-rays emitted from the
Crab pulsar magnetosphere when the IR Ðeld is approximated by a SSA
spectrum (case A). The solid, dashed, dash-dotted, and dotted curves corre-
spond to the same boundary conditions as in Fig. 2.

FIG. 5.ÈSame as Fig. 4 but the c-rays are inwardly propagating

vational upper limits for cases 1, 2, and 3 and exceeds the
limits for case 4. Nevertheless, we can exclude case 4 from
consideration because the expected GeV spectrum is very
very soft and is inconsistent with the EGRET observations,
whatever we may assume.D

MIt is noteworthy that the GeV spectrum, which does not
depend on the assumed IR Ðeld, depends on and sig-j1 j2niÐcantly. In particular, in case 4 (as the dotted curves
show), the GeV emission signiÐcantly decreases and softens
because both the potential drop and the maximum of E

Areduce as the gap shifts inward. As a result, it becomes
impossible to explain the EGRET Ñux around 10 GeV if the
gap is located well inside of the conventional null surface.

Next, let us next consider case B, in which the IR spec-
trum is interpolated from radio and optical pulsed Ñuxes. In
this case, the pair-production optical depth q computed
from equation (63) becomes as presented in Figure 6. There-
fore, the emitted TeV Ñux signiÐcantly reduces above 1 TeV.

The spectra of the outwardly and inwardly propagating
c-rays are presented in Figures 7 and 8, respectively. It
follows from the two Ðgures that the TeV Ñuxes exceed the
observational upper limits for cases 2, 3, and 4. In case 1, the

FIG. 6.ÈPair-production optical depth for the single power-law IR
spectrum (Fig. 1) Ðtted between radio and optical bands (case B).
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FIG. 7.ÈSpectra of outwardly propagating c-rays from the Crab pulsar
magnetosphere when the IR spectrum is interpolated from radio and
optical bands with a single power law (case B). Solid, dashed, dash-dotted,
and dotted curves correspond to the same cases as in Fig. 2.

upscattered Ñux is small because of its small which isNe,proportional to jtot\ 0.01.
Let us brieÑy consider the case when the interpolated

spectrum and a \ [0.88) extends to(N0\ 1.5] 1017
much higher frequencies and adopt (orvIR, max \ 10~5
1.2] 1015 Hz). In this case, q[ 2 holds above 0.2 TeV (Fig.
9) ; the absorbed TeV Ñux is thus suppressed below the
observational upper limits as Figure 10 indicates.

In short, we can conclude that the problem of the exces-
sive TeV Ñux does not arise if the IR Ðeld is represented by
an SSA spectrum (case A) or if the IR Ðeld is interpolated by
a single power law (case B) with a large cuto† energy
(vIR,max D 10~5).

5.4. Dependence on Magnetic Inclination
To investigate how the results depend on the magnetic

inclination, we present the expected Crab pulsar spectra for
in Figure 11. The dashed and dash-dotted curvesai\ 75¡

correspond to cases 2 and 3, while the dash-dot-dot-dotted
ones correspond to the case of and Case 1 isj1\ 0.5 j2\ 0.

FIG. 8.ÈSame as Fig. 6 for the Crab pulsar with but the c-raysai \ 45¡
are inwardly propagating.

FIG. 9.ÈSame as Fig. 6 but with a large upper cuto† energy, vIR, max \
10~5.

FIG. 10.ÈGamma-ray spectra from the Crab pulsar magnetosphere for
case B but with a large upper cuto† energy, Thick (or thin)vIR, max \ 10~5.
curves denote outwardly (or inwardly) propagating c-rays.

FIG. 11.ÈGamma-ray spectra from the Crab pulsar magnetosphere
with when the IR Ðeld is approximated by an SSA spectrum (caseai\ 75¡,
A). Thick (or thin) curves denote outwardly (or inwardly) propagating
c-rays.
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not depicted because the central energy of curvature-
radiated photons becomes comparable with b11 me c2\
90.8 GeV; in this case, its hard spectrum would be inconsis-
tent with the EGRET pulsed spectrum below 30 GeV and
the CELESTE upper limit at 60 GeV. Moreover, case 4 (i.e.,

and is excluded in Figure 11 ; this is becausej1\ 0 j2\ 0.3)
the gap is located so close to the star surface that the inverse
Compton scatterings dominate the curvature process.

Comparing the GeV spectra in Figure 11 with those in
Figures 4 and 5, we can conÐrm that the curvature emission
becomes hard and luminous if increases. Its physicalaiinterpretation will be discussed in ° 6.2. In Figure 11, case A
is adopted as the infrared spectrum; however, the IR Ðeld is
not important when we discuss the curvature-radiated c-ray
spectrum.

It also follows from Figure 11 that the observed, pulsed
GeV spectrum can be explained if we take andj1\ 0.5

for In other words, the curvature spectrumj2\ 0 ai \ 75¡.
becomes analogous between for (dashedj1\ 0.3 ai \ 45¡
curve in Fig. 4) and for (thick, dash-dot-j1\ 0.5 ai\ 75¡
dot-dotted one in Fig. 11), if we Ðx andjgap\ 0.01 j2\ 0.
That is, a greater is preferable for a greater It isj1 ai.natural, because the decrease of the distance of the intersec-
tion between the conventional null surface and the last-
open Ðeld line from the star surface (with increasing ai)should be compensated by shifting the gap outward (with
increasing so that the gap may have the comparablej1)magnetic and X-ray Ðeld strengths.

On these grounds, we can conclude that we cannot
decouple the e†ects of the magnetospheric currents (j1, j2)and if we compare only the Ñuxes of the outwardly pro-ai,pagating c-rays (when It would be possible to arguej1[ j2).that these two e†ects could be decoupled if we considered
the inward/outward Ñux ratio or the three-dimensional
structure of the accelerator. However, such details are not
pertinent to the main subject of this paper.

6. DISCUSSION

In summary, we have developed a one-dimensional
model for an outer gap accelerator in the magnetosphere of
a rotation-powered pulsar. When a magnetospheric current
Ñows into the gap from the outer (or inner) boundary, the
gap shifts inward (or outward). In particular, when a good
fraction of the Goldreich-Julian current density is injected
from the outer boundary, the gap is located well inside of
the conventional null surface ; the resultant GeV emission
becomes very soft and weak. Applying this method to the
Crab pulsar, we Ðnd that the gap should be located near to
or outside of the conventional null surface so that the
observed GeV spectrum of pulsed GeV Ñuxes may be
emitted via a curvature process. By virtue of the absorption
by the dense IR Ðeld in the magnetosphere, the problem of
excessive TeV emission does not arise.

6.1. Gap W idth versus Current Injection
By utilizing the gap closure condition (20), we can inter-

pret why W becomes signiÐcantly smaller when the gap is
located well inside of the conventional null surface (° 5.3.1).
First, the X-ray density becomes large at small radii to
reduce in equation (20). Second, the ratiojp jgap/jtotdecreases as increases. As a result, W decreases veryj2rapidly with increasing When W decreases, decreasesj2. Ncto some extent ; however, this e†ect is passive and cannot

change the conclusion. On these grounds, the gap width
signiÐcantly decreases when particles are injected at the
outer boundary. Therefore, the potential drop also
decreases signiÐcantly.

On the other hand, when the gap is located outside of the
conventional null surface, the decreased caused byjgap/jtotthe increase of partially cancels with the increase ofj1 jpbecause of the diluted X-ray Ðeld. Thus, the gap width is
roughly unchanged when particles are injected at the inner
boundary.

6.2. Interpretation of the Magnetic-Inclination Dependence
In this subsection, we interpret the dependence of the

results on (in ° 5.4). In Paper V, it was predicted that Wai(\ 2H in their notation) is a decreasing function of for allai12 pulsars considered. The reasons are Ðvefold :

1. With no current injection (i.e., as con-j1\ j2\ 0
sidered in Paper V), the gap is located at the intersection of
the last-open Ðeld line and the conventional null surface,
where vanishes.B

z2. The intersection approaches the star if increases.ai3. The density of the X-ray Ðeld illuminating the gap
increases as the intersection approaches the star (or, equiva-
lently, as decreases).rcnt4. It follows from the closure condition (eq. [20]) that

If we neglect the variations in W is pro-W P jp/Nc. Nc,portional to where is the X-rayjp P Nx ~1 P rcnt ~2, Nxnumber density. Therefore, W decreases with decreasing rcntand, hence, with increasing ai.5. In reality, decreases if W decreases. As a result ofNcthis ““ negative feedback e†ect,ÏÏ the decrease of W for an
increasing is partially canceled. However, this e†ect isaipassive ; therefore, the conclusion of the decreasing W with
increasing is unchanged.ai

In Paper V, the GeV emission is predicted to become
hard and luminous as increases for the same set ofai jgap, j1,and The reasons are Ðvefold :j2.

1. The gap approaches the star (i.e., decreases) asrcnt aiincreases for Ðxed and (say, as considered inj1 j2 j1 \ j2\ 0
Paper V).

2. The magnetic Ðeld in the gap increases as BP rcnt ~3
when the gap approaches the star.

3. As a result of this rapid increase of B, increasesE
A(e.g., eq. [29]), despite the decreasing W , as stated in the

paragraph just above.
4. The increased for a larger results in a harderE

A
aicurvature spectrum in GeV energies.

5. The potential drop in the gap is roughly proportional
to the maximum of in the gap times W . Because of theE

A““ negative feedback e†ect ÏÏ caused by the weaklyNc,decreasing W cannot cancel the increase of As a result,E
A
.

the potential drop and, hence, the GeV luminosity increase
with increasing ai.

6.3. Super Goldreich-Julian Current
In this subsection, we brieÑy discuss the relaxation of the

limit of the current density Ñowing in the gap along the Ðeld
lines. In Papers I, II, III, VI, in which is assumed,j1\ j2 \ 0
stationary gap solutions were found only for a small Byjgap.the revised method presented in this paper, the solutions for
the Crab pulsar exist for if we setjgap\ 0.0255, j1\ j2\ 0.
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The solution of for and forE
A
(s) j1\ j2\ 0 jgap\ 0.0255

the Crab pulsar when is depicted in Figure 12.ai\ 45¡
Because of the ““ brim ÏÏ at the inner boundary, no solution
exists for In this case, isjgap[ 0.0255. jtot\ jgap] j1] j2limited only below 0.0255, which is much less than the
typical Goldreich-Julian value, 1.

Let us brieÑy consider how much is needed for thejtotobserved spin-down luminosity to be emitted. If we assume
that all the current Ñowing in the magnetosphere penetrate
the gap, then the net current becomes J \ ()/2n) jtot(,
where ( is the magnetic Ñux along which the current is
Ñowing. Assuming a magnetic dipole radiation, we obtain
the potential drop at the stellar surface as V

*
D)(/(nc).

The spin-down luminosity then becomes

E0 rot \ J ] V
*

D
jtot
c
A)

n
(
B2

. (69)

If the gap is geometrically thick in the transÐeld directions,
we may expect that the Ðeld lines thread the polar cap with
area where refers to the stellarApole4 n(r

*
sin h

*
)2, r

*radius and to the colatitude angle between the magnetich
*axis and the last-open Ðeld line. Utilizing sin2 h

*
/r

*
\

constant D )/c for a dipole geometry, we obtain

( D
km
r
*
3 ApoleD n

)km
c

, (70)

where is the neutron starÏs magnetic dipole moment.kmSubstituting equation (70) into (69), we obtain

E0 rot D jtot
)4km2

c3 . (71)

For the Crab pulsar, ergs s~1 ; therefore,)4km2 /c3\ 1038.6
is required so that the observed spin-down lumi-jtot D 1

nosity 1038.65 ergs s~1 may be realized. Analogous conclu-
sions are derived for other rotation-powered pulsars.
Moreover, the sharp pulse of the Crab pulsar may imply

therefore, even may beApole> n(r
*

sin h
*
)2 ; jgap? 1

required. On these grounds, the limitation of jtot\ jgap> 1
derived for was insufficient to apply to realisticj1\ j2 \ 0
pulsars.

In this paper, we relaxed the limitation of by allowingjtotor to be nonvanishing. The results of the predictedj1 j2

FIG. 12.ÈDistribution of for the Crab pulsar with whenE
A
(s) ai\ 45¡

jgap\ 0.0255, j1\ j2\ 0.

c-ray spectra are, therefore, more realistic as compared with
previous results obtained in Papers I, II, III, VI. However,
even in this treatment, is limited below unity.jtotThe next issue, therefore, is to consider whether we can
construct an outer gap model with superÈGoldreich-Julian
current density (i.e., The Poisson equation (30) tellsjgap[ 1).
us that solutions exist even for provided thatj1 ] j2? 1,

(For example, if the gap exists at thej1[ j2\ 1. j1\ j2? 1,
conventional null surface.) In this case, W becomes much
smaller than those obtained for because of thej1 ] j2\ 1
gap closure condition (eq. [20]). In the case of the Crab
pulsar, the small W obtained for fails the mono-j1] j2[ 1
energetic approximation. To Ðnd solutions for jtotD j1we could assume much smaller collision angles so] j2? 1,
that the pair-production mean free path may become much
larger. To settle this issue, we must constrain the magnetic
Ðeld geometry around the gap and quantitatively infer the
collision angles between the primary c-rays and the second-
ary X-rays.

In short, stationary gap solutions exist even for a superÈ
Goldreich-Julian current. In this case, the collision angles
should be much less than so that the emitted c-rayW /-LCÑux may be consistent with observations for the young
pulsars for which the X-ray Ðeld is dense (like Crab). For
older pulsars with X-ray Ðelds that are less dense, on the
other hand, we can in fact Ðnd solutions with superÈ
Goldreich-Julian current. This will be discussed in a sub-
sequent paper.

6.4. Comparison with Previous Works
Let us compare the present methods and results with

Paper V. In this paper, and were solvedE
A
, N

B
(s), G

B
(s, vc)from the Vlasov equations for a nonvacuum gap, while in

Paper V only Ðeld was solved from the Poisson equationE
Afor a vacuum gap, with the aid of W , which was deduced

from the gap closure condition. In the stationary gap, the
Vlasov equations automatically satisfy the closure condi-
tion ; therefore, the obtained electrodynamic structures (e.g.,
W , are essentially the same between the two papers,E

A
)

provided that the gap is nearly vacuum (i.e., Byjtot> 1).
relaxing the boundary conditions of the magnetospheric
current, and by solving the nonvacuum solution from the
Vlasov equations, we Ðrst Ðnd in this paper an interesting
behavior of the gap position : The gap shifts outward (or
inward) when current is injected from the inner (or outer)
boundary. The obtained GeV spectra are similar between
the two papers, unless the gap is located well inside of the
conventional null surface. In Paper V, the intrinsic TeV
spectra were depicted in Figure 6 ; on the other hand, in this
paper, the TeV spectra after absorption were depicted in
Figures 4, 5, 7, 8, and 10.

We brieÑy compare the present method with ZC97, who
considered that the gap width is limited by the surface
X-rays caused by the bombardment of the particles pro-
duced in the gap. The magnetospheric X-rays considered in
this paper are much denser than the surface X-rays caused
by the bombardment. As a result, the localized gap in the
present paper produces less intrinsic TeV Ñux compared
with what would be obtained in the ZC97 picture.

6.5. Possibility of Another Solution Branch
For cases 1, 2, and 3, the intrinsic TeV luminosity is

comparable or less than the GeV one. Therefore, the
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Lorentz factors are limited primarily by the curvature
process (eq. [45]). For case 4, however, the intrinsic TeV
luminosity well exceeds the GeV one ; therefore, the
radiation-reaction forces are caused by inverse Compton
scatterings rather than the curvature process. In fact, we
may expect a sufficient GeV Ñux via inverse Compton scat-
terings when the gap is located well inside of the conven-
tional null surface. This is because the dense X-ray Ðeld
will suppress the particle Lorentz factors (Paper II) and

because the less-energetic particles scatter copious IR
photons into lower c-ray energies with large cross sections

There is room for further investigation on this issue.(DpT).
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