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ABSTRACT

We investigate a stationary pair-production cascade in the outer magnetosphere of a spinning neutron
star. The charge depletion due to global flows of charged particles causes a large electric field along the
magnetic field lines. Migratory electrons and/or positrons are accelerated by this field to radiate curva-
ture gamma rays, some of which collide with the X-rays to materialize as pairs in the gap. The replen-
ished charges partially screen the electric field, which is self-consistently solved together with the
distribution functions of particles and gamma rays. If no current is injected at either of the boundaries of
the accelerator, the gap is located around the conventional null surface, where the local Goldreich-Julian
charge density vanishes. However, we first find that the gap position shifts outward (or inward) when
particles are injected at the inner (or outer) boundary. Applying the theory to the Crab pulsar, we
demonstrate that the pulsed TeV flux does not exceed the observational upper limit for moderate infra-
red photon density and that the gap should be located near to or outside of the conventional null
surface so that the observed spectrum of pulsed GeV fluxes may be emitted via a curvature process.
Some implications of the existence of a solution for a super Goldreich-Julian current are discussed.

Subject headings: gamma rays: observations — gamma rays: theory — magnetic fields —
pulsars: individual (Crab Pulsar) — X-rays: galaxies

1. INTRODUCTION

The EGRET experiment on the Compton Gamma Ray
Observatory has detected pulsed signals from seven
rotation-powered pulsars (e.g., for Crab, Nolan et al. 1993;
Fierro et al. 1998). The modulation of the y-ray light curves
at GeV energies testifies to the production of y-ray radiation
in the pulsar magnetospheres either at the polar cap
(Harding, Tademaru, & Esposito 1978; Daugherty &
Harding 1982, 1996; Sturner, Dermer, & Michel 1995;
Shibata, Miyazaki, & Takahara 1998) or at the vacuum
gaps in the outer magnetosphere (Cheng, Ho, & Ruderman
1986a, 1986b; Chiang & Romani 1992, 1994; Romani &
Yadigaroglu 1995; Romani 1996; Zhang & Cheng 1997,
ZC97). Effective y-ray production in a pulsar magneto-
sphere may be extended to the very high energy (VHE)
region above 100 GeV as well; however, the predictions
of fluxes by the current models of y-ray pulsars are not
sufficiently conclusive. Whether or not the spectra of
y-ray pulsars continue up to the VHE region is a question
that remains one of the interesting issues of high-energy
astrophysics.

In the VHE region, positive detections of radiation at a
high confidence level have been reported from the direction
of the Crab pulsar (Nel et al. 1993). However, as for pulsed
TeV radiation, only the upper limits, as a rule, have been
obtained (Akerlof et al. 1993; Borione et al. 1997; Sriniva-
san et al. 1997; Yoshikoshi et al. 1997; Sako et al. 2000). If
the VHE emission originates in the pulsar magnetosphere, a
significant fraction of it can be expected to show pulsation.
Therefore, the lack of pulsed TeV emissions provides a
severe constraint on the modeling of particle acceleration
zones in a pulsar magnetosphere.
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In fact, in the picture provided by Cheng et al. (1986a,
1986b), the magnetosphere should be optically thick for pair
production in order to reduce the TeV flux to an unob-
served level by absorption. This in turn requires very high
luminosities of infrared photons. However, the required IR
fluxes are generally orders of magnitude larger than the
observed values (Usov 1994). We are therefore motivated by
the need to contrive an outer gap model that produces less
TeV emission with a moderate infrared luminosity.

High-energy emission from a pulsar magnetosphere, in
fact, crucially depends on the acceleration electric field, E |,
along the magnetic field lines. It was Hirotani & Shibata
(1999a, 1999b, 1999c; hereafter Papers I, II, III) and Hiro-
tani (2000b, hereafter Paper VI) who first considered the
spatial distribution of E together with particle and y-ray
distribution functions. By solving these Vlasov equations,
they demonstrated that a stationary gap is formed around
the conventional null surface at which the local Goldreich-
Julian charge density,

QB,
27nc

Pgy= — > @)

vanishes, where B, is the component of the magnetic field
along the rotation axis, Q the angular frequency of the
neutron star, and c¢ the speed of light. Equation (1) is valid
unless the gap is located close to the light cylinder, of which
distance from the rotation axis is given by @, = ¢/Q. The
electrodynamic model developed in this paper is basically
the same as that of Paper VI. However, we find an inter-
esting behavior of the gap position by relaxing the bound-
ary conditions to allow electric current injection through
the inner or the outer boundaries of the gap.
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Subsequently, Hirotani (2000a, hereafter Paper IV; 2001,
Paper V) considered the “gap closure condition ” so that a
gap may maintain a stationary pair-production cascade. In
this paper, this closure condition is generalized into the case
in which the currents are injected through the boundaries.

In the next two sections, we describe the physical pro-
cesses of pair-production cascade and the resultant y-ray
emission. We then apply the theory to the Crab pulsar and
present the expected y-ray spectra in § 5. In the final section,
we discuss the possibility of a gap formation for a super
Goldreich-Julian current.

2. ANALYTIC EXAMINATION OF THE GAP POSITION

Let us first consider the gap position analytically when
there is a current injection into the gap. We consider the
particle continuity equations in § 2.1 and the y-ray Boltz-
mann equations in § 2.2.

2.1. Particle Continuity Equations

Under the monoenergetic approximation, we simply
assume that the electrostatic and the curvature-radiation-
reaction forces cancel each other in the Boltzmann equa-
tions of particles. Then the spatial number density of the
outwardly and inwardly propagating particles, N, (s) and
N _(s), at distance s from the neutron-star surface along the
last-open field line, obey the following continuity equations:

ON . 6N +
=0, @
where
1 [e o)
Q(x) = ; J dey[rlp+ G+ + ﬂp, G,] 5 (3)

G.(x, €,) and G_(x, €,) refer to the distribution functions of
outwardly and inwardly propagating y-ray photons, respec-
tively, having energy m, c’¢,. The pair-production rate for
an outwardly propagating (or inwardly propagating) y-ray
photon to materialize as a pair per unit time is expressed by
Mo+ (or n,_). For charge definiteness, we consider that a
positive electric field arises in the gap. In this case, N, (or
N_) represents the number densities of positrons (or
electrons).

The particle velocity at position (r, ) becomes (eq. [21]
in Paper VI)

B
v=1v,+ <rQ sin 6 + kB, — cE| B_?>e¢ , 4)

where x is a constant and e, refers to the azimuthal unit
vector. In the parentheses, the term rQ sin 6 is caused by
corotation, while kB, is caused by magnetic bending. Since
E, arises in the gap, the correspondlng drift velocity
appears as —cE| B,/B. Unless the gap is located close to
the light cylinder, we can neglect the terms containing B as
a first-order approximation. We thus have

v X v, +1Q sin Oe, . (5)
Imposing a stationarity condition
[0, + (rQ sin 0)04]N, =0, (6)

reminding that the projected velocity on the poloidal plane
is v, = c cos ®B,/B,,, and utilizing divB, ~ divB =0, we

obtain

a N+ 1 @
+B6S< >_CCOS(I)L dev[r’p-F G+ +r’p— G—] ] (7)

where @ refers to the projection angle of the particle three-
dimensional motion onto the poloidal plane. It is defined by
® = arcsin (r,,, Q sin 0/c), where r_,, is the distance of the
gap center from the star center. The pair-production rate
per unit of time by a single y-ray photon, 1, . , is defined as

dN,
npi(ey) = (1 HC)CJ‘ €x d p(€y9 €x> ﬂc) (8)

where ¢, is the pair-production cross section and cos™" p,
refers to the collision angle between the y-rays and the
X-rays (see Paper VI for more details about eq. [8]); €4, =
2/[(1 — p.)e,]. The adopted value of ., will be detailed in
§ 5.2. The quantity €, refers to the X-ray energy in the unit
of m, c.

Although @ # 0 is adopted after § 3.1, in this section we
simply neglect the projection effect of the poloidal velocity
and put ® = 0. Then equation (7) gives

d (N,\ 1
+Bds< ) /,ij;dey(G++G) )

where G, (s, €,) and G_(s, €,) refer to the distribution func-
tions of the outwardly and inwardly propagating y-rays; the
mean free path 4, is defined by
1[5 ny+ G de
Ay=—t— ¥, 10
P e [§Gyde, (10)
Since W < @ is justified for the Crab pulsar (Paper V), we
regard 4, to be constant in the gap in this section.

2.2. Boltzmann Equations for Gamma Rays

Unlike the charged particles, y-rays do not propagate
along the magnetic field line at each point because they
preserve the directional information where they were
emitted. However, to avoid complications, we simply
assume that the outwardly (or inwardly) propagating y-rays
dilate (or constrict) at the same rate with the magnetic field.
This assumption gives a good estimate when W < @
holds. We then obtain (Paper VI)

9 (G
+B— <+>=— Tor g, y—Te N, 1)

0s ccos @ ccos ®

where (e.g., Rybicki & Lightman 1979)
\[ 3e’l’ 1 €,

= -2 12

=Yt L), (12
1 3 heI3

= m.c® 4n R’ (13)

C

F(s) = SJ Ks5(t)dt ; (14)

R is the curvature radius of the magnetic field lines and
K5 is the modified Bessel function of 5/3 order. The effect
of the broad spectrum of curvature y-rays is represented by
the factor F(e,/e.) in equation (12).

Noting that the absorption caused by pair production is
negligible compared with the curvature emission term on
the right-hand side of equation (11), and putting ® =0
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again, we obtain

011 _nd€) N+(s)
ia[ G.(s, v)] c B - (15)

Integrating equation (15) over €,, and combining with equa-
tion (9), we obtain

2 (N, 1 N,—N_ (&
idSZ < B ) - /1pC B J,;o rlc(ey)dev s (16)

where fy is the upper cutoff dimensionless y-ray energy. In
the present paper, we set By = o = 10°-5 (see § 3.1).

One combination of the two independent equations that
constitute(16) yields the conserved current per magnetic flux
tube,

Q Nis)+N_(s
— it = C&€ ——————— 17
27[ .]tot ce B(S) ( )
If j = 1.0, the conserved current density becomes its
Goldreich-Julian value. Another combination of the equa-
tions that constitute (16) gives

d> (N, —N_ 4N, N, — N_
@(73 )_i—piB ’ (18)
where
w/2 BN
N, = —/ J n(€,)de, (19)
¢ Bo

refers to the expectation value of the number of y-rays
emitted by a single particle that runs a typical length W/2 in
the gap.

In a stationary gap, the pair-production optical depth,
W/A,, must equal the expectation value for a y-ray to
materialize with the gap, N, '(jgp/jio)- We thus obtain the
following condition:

2o Juap

W= =,
Ny.]tot

(20)
which is automatically satisfied by the stationary Vlasov

equations. Here, the dimensionless current density, j,,p,
created in the gap is defined by

Q . _N.(s,) . N (sq)

Ymce ' = B(s,) B(s,)

_N—(S1) N _(s,)
B B(s,) a B(s;) °
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where s, and s, designate the position of the inner and the
outer boundaries, respectively. That is, W = s, — s,. Equa-
tion (20) corresponds to a generalized version of the gap
closure condition considered in Papers IV and V (e.g,
eq. [30] in Paper V), in which j; = j, = 0 and, hence, j,,, =
jioe Was assumed. When there is a current injection (i.e.,
when j, or j, is nonvanishing), not only the produced par-
ticles in the gap but also the injected particles contribute to
the y-ray emission. Therefore, the gap width is adjusted
smaller compared with the j, =j, = 0 case by the factor
Jeap/Jior- Utilizing condition (20), we can rewrite equation
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(18) into the form

#N N
ds? B N

To solve the differential equation (22), we impose the
following two boundary conditions:

joo 1 Ny = N_

22
i W B (22)

Ni(sy) Q i
B(s,) ~onte @3)

N_(s5) Q j
Bl 207 Y

With the aid of equation (21), these two boundary condi-
tions give

N, —-N_ Q . , .
= B = _E(Jgap_Jl +J2) (25)
ats = s;,and

N,-N_ Q . .
+T = Z (]gap +J1 _JZ) (26)

at s = s,. It follows from equation (22)

N+ —N_ _ Q |: . Slnh \/ (]tot/]gap (S cnt/W/z) :|
B Omee | sinh (y/Giodiar)

|:(] i) COSh \/ ]tm/]gap (s — cnt/W/2 ]
1
cosh (\/ (Jeot/J gap))
(27)
where the gap center position is defined by
S, — S
e =25 (28)

2.3. Poisson Equation

The real charge density e(N, — N _), which is given by
equation (27), appears in the Poisson equation for the non-
corotational potential . Neglecting relativistic effects, and
assuming that typical transfield thickness of the gap, D, is
greater than or comparable with W, we can reduce the
Poisson equation into the one-dimensional form (Paper VI;
see also § 2 in Michel 1974)

QB
—VY = 47r|:e(N+ ~N_)+ %] , (29)

where e designates the magnitude of the charge on an elec-
tron. Substituting equation (27) into (29), we obtain

2BQ S — Sen
_VZ‘P = T |:]gap f;:dd( W/2 t)

T e A T

where

sinh (\/Usarljgap) ) (31)

Soaad®) =
ax sinh (\/m)
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and

cosh (y/GiodJian) ) (32)
cosh (v/Giodlgap)

There are essentially three assumptions that are used to
derive equations (30), (31), and (32): the radiation-reaction
forces exactly cancel with the electrostatic force in the par-
ticles” Boltzmann equations; #,.(€,) = n,_(€,), which may
be justified for a power-law, magnetospheric X-ray com-
ponent; and the Poisson equation is analyzed one-
dimensionally along the magnetic field line.

Jeven(X) =

2.4. Generalization of the Null Surface

To examine the Poisson equation (30) analytically, we
assume that the transfield thickness of the gap is greater
than W and replace V?¥ with d*¥/ds*. Furthermore, we
neglect the current created in the gap and simply set
Jgap = 0.

* Ii:irst, consider the case when a current injects from
neither of the boundaries, that is, j; = j, = 0. It follows that
the derivative of the acceleration field (i.e., —d?¥/ds?) van-
ishes at the conventional null surface where B, vanishes. We
may notice that —d*¥/ds* is positive at the inner part of
the gap and changes its sign near the gap center (s = s_,,) to
become negative at the outer part of the gap. Therefore, we
can conclude that the gap is located (or centers) around the
conventional null surface, if there is no current injection
from outside.

Second, consider the case when a current is injected at the
inner boundary (at s = s,) and j, — j, > 0 holds. Since the
function f,., is positive at arbitrary s, the gap center is
located at a place where B, is negative, that is, outside of the
conventional null surface. In particular, when j;, —j, ~ 1
holds, —d?¥/ds® vanishes at the place where B, ~ —B.Ina
vacuum, static dipole field, B, ~ — B is realized along the
last-open field line at the light cylinder. Therefore, the gap is
expected to shift toward the light cylinder, if the injected
current density at the inner boundary approaches the
Goldreich-Julian value. We may notice here that £, ., is less
than unity because |s — s, | does not exceed W /2.

Third and finally, consider the case when j;, —j, ~ —1
holds. In this case, —d*¥/ds* vanishes at the place where
B, ~ B. Therefore, the gap is expected to be located close to
the star surface, if a Goldreich-Julian current density is
injected at the outer boundary. In what follows, we will
examine more accurately these predictions on the gap posi-
tion versus current injection by solving the Vlasov equa-
tions (7), (11), and (30) numerically.

3. BASIC EQUATIONS AND BOUNDARY CONDITIONS

In this paper, we assume that the transfield thickness, D |,
of the gap is much greater than W and neglect the transfield
derivatives in the Poisson equation (29). We consider that
this one-dimensional analysis could be justified because
D, ~ 6W is required so that the predicted GeV flux may be
consistent with the EGRET observations (§ 5.3.1). We
rewrite the Vlasov equations into the suitable forms for
numerical analysis in § 3.1 and impose boundary conditions
in § 3.2.

3.1. One-dimensional Vlasov Equations
As will be shown at the end of this section, it is convenient
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to introduce the typical Debye scale length c/w,,

4rme* QB.,,
_ [Ame” OBy (33)
De m, 2mce’

where B,,, represents the magnetic field strength at the gap
center. The dimensionless coordinate variable then becomes
& = (w,/c)s . (34)

By using such dimensionless quantities, we can rewrite the
Poisson equation into

dy
de’

dE; _ B() B.(9)

& =5, @@l

where (&) = e¥(s)/(m, c?); the particle densities per unit
flux tube are defined by

E, =— (35)

(36)

2nce N,

Q B’
We evaluate B,/B at each point along the last-open field line
by using the Newtonian dipole field.

Let us introduce the following dimensionless y-ray den-
sities in the dimensionless energy interval between §;_; and

Bi:

ny(f) = (37)

2mce
QB

In this paper, we set B, = 10%, which corresponds to the
lowest y-ray energy, 51.1 MeV. We divide the y-ray spectra
into nine energy bins and put g, = 102>, g, = 103, B, =
1033, B, =10% Bs=10*> Bs=10*75, and B, = 10°.
Bs = 10°-2°,and B, = 10°->.

We can now rewrite the continuity equation (7) of par-
ticles into

d + cnt
Ne_ y Bem z[n,,+ '9.&) + 1, '@, (39)

dé " Bcos @ ;S
where the magnetic field strength, B, is evaluated at each ¢.
The dimensionless redistribution functions #,, are evalu-
ated at the central energy in each bin as

i 1 i—1 i
Mp+ = npi<ﬁ‘ - ﬁ) . (40)
, 2

A combination of the equations in (39) gives the current
conservation law,

Jiot = N4() + n_(&) = constant for &, 41)

which is equivalent with equation (17).

The Boltzmann equations in (11) for the y-rays are inte-
grated over €, between dimensionless energies f;_; and f;
to become

Bi
g+ = J de,G4(s, €,) . (38)

cnt

d . d _on, )
_ gt = + i _ e ™S 4
dé Jx dé (lnB)¥ cos @ /% + B, cos ® ny, (42)
wherei=1,2,...,m(m = 9)and
l \/_ezr‘ ilec [e9)
ne = w, IR, .[, " SJ; Ks5(t)dt (43)

is dimensionless.
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Equating the electric force e|d¥/dx| and the radiation
reaction force, we obtain the saturated Lorentz factor at

each point as

3R, | d¥ /4

I, = < | — 1 ; 44
sat < 2e ds + > b ( )

we compute the curvature radius R, at each point for a
Newtonian dipole magnetic field. Since the maximum of
|d¥/dx| and the potential drop are roughly proportional
to W2 and W3, respectively (Paper V), the particles become
unsaturated for very small W. To avoid an overestimation
of the Lorentz factor in such cases, we compute I" by

1 1 1
sat !02(‘52)

©=
where /(&,) represents the maximum attainable Lorentz
factor.

(45)

3.2. Boundary Conditions

We now consider the boundary conditions to solve the
Vlasov equations (35), (36), (39), and (42). At the inner
(starward) boundary (¢ = &,), we impose (Paper VI)

E\()=0, (46)
Y() =0, 47)
g (E)=0 (i=12..,9). (48)

It is noteworthy that condition (46) is consistent with the
stability condition at the plasma-vacuum interface if the
electrically supported magnetospheric plasma is completely
charge-separated, i.e., if the plasma cloud at £ < &, is com-
posed of electrons alone (Krause-Polstorff & Michel 1985a,
1985b; Michel 1991). We assume that the Goldreich-Julian
plasma gap boundary is stable with E;, = 0 on the bound-
ary,f = 61'

Since positrons may flow into the gap at £ = £, as a part
of the global current pattern in the magnetosphere, we
denote the positronic current per unit flux tube at & = £, as

ni(é)=ji, (49)
which yields (eq. [41])
n_(&y) = jio —Jji1 - (50)
At the outer boundary (¢ = &,), we impose
E| ) =0, (1)
g (&)=0 (i=12..9)), (52)
n_(&)=j,. (53)

Conditions (49) and (53) are equivalent with (23) and (24).
The current density created in the gap per unit flux tube
can be expressed as

jgap =jtot_j1 _j2 . (54)
This equation is, of course, consistent with equation (21).
We adopt j,,p, j1,and j, as the free parameters.

We have a total of 24 boundary conditions (46)—(53) for
22 unknown functions ¥, E |, n, gy (i=1,2,...,9). Thus,
two extra boundary conditions must be compensated by
making the positions of the boundaries £; and &, be free.

The two free boundaries appear because E; = 0 is imposed
at both the boundaries and because j,,, is externally
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imposed. In other words, the gap boundaries (£; and &,)
shift, if j, and/or j, varies.

Let us briefly comment on the convenience of the intro-
duction of the dimensionless coordinates and variables. It
follows from the Vlasov equations (35), (36), (39), and (42)
that the solutions ¢, ¥, E|, n,, and g, are unchanged if B,
nh+, and n} are invariant. Consider the case when the nor-
malization of dN,/de, is doubled. In this case, equations (8)
and (40) show that #;, is invariant if we also double w,,. Note
that €, in equation (43) is proportional to co"’/“Rf/2 (eq.
[13]), Where T ~ I, o« R1/2|d‘1‘/ds|”4 is used. Tt follows
that €, is also invariant if we increase R, by 272 times. It
should be noted that 1’ (eq. [43])is invariant by this change
of parameters. On these grounds, we can reduce one degree
of freedom in the free parameters.

4. PREDICTED GAMMA-RAY FLUX

In this section, we detail the method for computing the
vF, spectrum in GeV energies in § 4.1 and in TeV energies in
§4.2.

4.1. GeV Spectra

The GeV spectra of outwardly and inwardly propagating
y-rays are obtained from ¢* (¢,) and ¢* (&,). At position £,
the y-ray emission rate becomes

y—ray fux = A ¢ SoRgi@st, (59
where A, refers to the cross section of the gap at £. Multi-
plying the mean y-ray energy /B; Bi- 1 m.c?, on equation
(55), dividing it by AQg.vd?, and further dividing by the
frequency interval m c2(/3 Bi_ 1)/h we obtain the flux
density, F,; here, AQGeV is the emission solid angle, and & is
the Planck constant. We thus obtain the GeV flux

ﬁiﬂi—l 2 Qch Acrgii—

F, = .
T ﬁi_ﬂi—1mec 2ne AQg.y d?

To compute the y-ray flux emitted outwardly (or inwardly)
from the gap, we adopt the plus (or the minus) sign in g,
and evaluate 4., g, at £ =&, (or £;). As will be shown in
§ 5.3, W < w ¢ holds for the Crab pulsar. We thus simply
apply the same cross section for both the outwardly and
inwardly emitted y-rays and put 4., = D?, where D, should
be greater than or at least comparable with W for the one-
dimensional approximation of the Poisson equation (29) to
be justified.

It is noteworthy that the particles lose most of their
energy in the gap if [,.. < W holds, where [, refers to the
length scale for particles to be accelerated to the saturated
Lorentz factor (eq. [44]). That is, we can neglect the primary
luminosity emitted by the particles running outside of the
gap, compared with that emitted by the particles running
inside of the gap, if [,., < W. Since the monoenergetic
approximation of the particle motion (§ 2.1) is justified when
l,.. < W, the neglect of GeV emission by the particles
running outside of the gap is consistent with the mono-
energetic approximation. We thus compute the GeV lumi-
nosity from the solved y-ray distribution functions g4 (&)
and g"(&,).

(56)

4.2. TeV Spectra

Once the electrodynamic structure of the gap is solved,
we can further compute the upscattered y-ray flux emitted
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from the whole accelerator, if additionally given the infrared
photon field. This treatment is justified unless the upscat-
tered, TeV luminosity exceeds the curvature-radiated, GeV
one.

If an electron or a positron is migrating with Lorentz
factor I > 1 in an isotropic photon field, it upscatters the
soft photons to produce the following number spectrum of
y-rays (Blumenthal & Gould 1970):

dN 3 ¢ dNp deg
dtde, —3'2 der €r

x |:2q Ing + (1 + 29)(1 — q) + (%("1) i 5 ﬂ . (57)

where Q = 4eR T, g = €,/Q(I" — €,), dNg/dey refers to the
IR photon density per unit dimensionless energy interval
between €z and € + dem, o1 is the Thomson cross section;
er and e, are the energles of the IR and the upscattered
photons i 1n units of m, ¢? Equatlon (57) is valid if the reso-
nance effects are neghglble that is, B < B,,; = 4.4 x 10'3
G. This inequality is satisfied except for the polar cap. The
flux density of the upscattered photons becomes

N €IR, max dN
F.=——% _.h -
" T AQy & €V£ dtde, deg, dew,  (58)

where AQy.y refers to the emission solid angle of the upscat-
tered photons. In this paper, we estimate N, with

IR, min

. . QBcn
Ne=(Jgap+]1)TcetWDL2 (59)

to compute the outwardly propagating TeV flux, which are
emitted by outwardly propagating particles (i.e., positrons)
and with

Bc“
(.]gap + .]2) : WDL (60)
to compute the inwardly propagating TeV flux, which are
emitted by inwardly propagating particles (i.e., electrons).
Multiplying the y-ray frequency €, m, c?/h on the F, flux
density (eq. [58]), we obtain the upscattered flux

2 cnt Acr 2

2ne AQqyd®

€IR, max dN
X WJ; cdt de, de deiw 61)

VFv = (jgap +ja)mec

IR, min

where j, =j; (or j,) for outwardly (or inwardly) emitted
y-rays. As the emission solid angles, we assume
2nW
AQgey = AQroy = == (62)
Wic

in this paper.

We also consider the extrinsic absorption of the TeV
photons outside of the gap. For a homogeneous and iso-
tropic IR field, the optical depth becomes

wLC €IR, max dNIR
e,) =——

2 - deg

€IR, min

ap(EIR’ ey’ Hc)delk > (63)

where the path length is assumed to be w; /2. We apply the
same path length for all the cases considered so that the
extrinsic absorption may work equally.
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5. APPLICATION TO THE CRAB PULSAR

5.1. Input Infrared Field

Consider the case when the IR spectrum is homogeneous
and expressed by a single power law,

der

=N 0 E?R H (64)

where N, and a are spatially constant. For an isotropic
field, the specific intensity becomes

hNO el (65)

Assuming that this uniform sphere has radius @;c, we
obtain the following flux density at distance d:

2
[
F, =7 <—;C) hNo e ™!

d -2
=45 x 1072°Q, _2<k_pc> Noer® 'y . (66)
As the lower and upper cutoff IR photon energies, we adopt
€R, min = 107° and €p g =107° where ep i, <
€R < €R, max -
Because the pulsed flux around eV energies is difficult to
observe, we consider the following two cases for the set of
Ny and a:

Case A—We assume that the IR spectra below € <
10~° (or equivalently, below 1.23 x 10'* Hz) are optically
thick for synchrotron self-absorption and adopt « = 1.5.
Setting F, = 3 mJy at € = 10~ °, which is consistent with
near-IR and optical observations (Eikenberry et al. 1997),
we obtain N, = 2.3 x 1032 ¢cm 3,

Case B.—Interpolating the phase-averaged color spec-
trum in UV, U, B, V, R (Percival et al. 1993), J, H, K
(Eikenberry et al. 1997) bands, and the radio observation at
8.4 GHz (Moffett & Hankins 1996), we obtain N, = 1.5
x 10'7 cm ™3 and o = —0.88. In Figure 1, we present the
fitted spectrum with the solid line; the ordinate is vF, in Jy
Hz.

flux [Jy Hz]
wo”og 10%10"% 002

WOWO WOM WOWZ WOWB WOMr WOW5

frequency [Hz]

Fi1G. 1.—Single power-law fit of phase-averaged color spectrum of the
Crab pulsar (case B, see § 5.1). The abscissa is the photon frequency in Hz,
while the ordinate is the photon flux in Jy Hz.
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5.2. Input X-Ray Field

HEAO 1 observations revealed that the X-ray spectrum
in the primary pulse phase is expressed by

d
% = Npl Exa (emin < €y < €max) s (67)

X

with o = —1.81 and N, = 5.3 x 10'*(d/kpc)*(ren/wrc) >
(Knight 1982). We adopt €,,, =0.1 keV/511 keV and
€max = 90 keV/511 keV. Unlike the IR field, which is
assumed to be homogeneous within radius @, , we suppose
that the X-rays are emitted near to the gap. In this case, the
X-ray density computed from the observed flux will increase
as the gap is located close to the star. To consider such
effects, we simply assume that the X-ray density is pro-
portional to the inverse square of 7.

The angle dependence of the specific intensity of the
X-ray field is considered in the collision angle, u. (eq. [8], or
[40]). In the case of the Crab pulsar, the X-ray field is
dominated by a power-law component, which is probably
emitted near the outer gap accelerator rather than from the
neutron star surface. We thus simply evaluate the cosine of
the collision angles as

pe = cos (W/myc) (68)

for both inwardly and outwardly propagating y-rays. Aber-
ration of light is not important for this component because
both the X-rays and the y-rays are emitted nearly at the
same place. We may notice here that this is a rough estimate
of u. and that €, = 2/[(1 — p)e,] strongly depends on y, if
W < @ (ie,if 1 — u, < 1). In the case of the Crab pulsar,
W [, ~ 0.05 holds (see Fig. 2); therefore, the true results
will depend on the detailed beaming geometry of the sec-
ondary X-rays, which are emitted outside of the gap along
local magnetic field lines via the synchrotron process.
However, to inquire into this matter would lead us to into
that specialized area of the magnetic field configuration
close to the light cylinder. Such a digression would
undoubtedly obscure the outline of our argument.

5.3. Results

Let us now substitute the X-ray field into equation (8)
and solve the Vlasov equations by the method described in
§ 2. It should be noted that we do not use the IR spectrum
considered in § 5.1 to solve E (&), n.(¢), and g, (£); they are
necessary when we consider the TeV emission caused by
inverse Compton scatterings.

In Paper 1, it is argued that the inverse Compton scat-
terings dominate the curvature radiation in the outer gap in
the Crab pulsar magnetosphere if we adopt u, =0.
However, in the present paper, we consider that the colli-
sion angles are much smaller than 90° and adopt u, =
cos (W/w ). In this case, unless the gap is located well
inside of the conventional null surface, curvature radiation
becomes the primary process in y-ray emission and, hence,
in the radiation-reaction forces. The rotational frequency
and the magnetic moment are Q = 188.1 rad s~' and
Uy = 3.38 x 103° G cm?3.

5.3.1. Electric Field Structure

To reveal the spatial distribution of the acceleration field,
we consider four representative boundary conditions:
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Case 1.(j;, j,) = (0, 0) > solid curves.

Case 2.(j,, j,) = (0.3, 0) > dashed curves.
Case 3.(jy, j,) = (0.6, 0) > dash-dotted curves.
Case4.(jy, j») = (0, 0.3) > dotted curves.

That is, for case 2 (or case 4), the positronic (or electronic)
current density flowing into the gap per unit flux tube at the
inner (or outer) boundary is 30% of the typical Goldreich-
Julian value, Q/2n. We fix j,,, = 0.01 for all four cases
because the solution forms a “brim” and ceases to exist
(Fig. 2 in Hirotani & Okamoto 1998) if j,,, exceeds a few
percent. In what follows, we adopt 45° as the magnetic
inclination, which is necessary to compute B at each point
for the Newtonian dipole field. Since the X-ray field is domi-
nated by a power-law component, the inclination does not
affect p..

The results of E () for the four cases are presented in
Figure 2. The abscissa designates the distance along the
last-open field line and covers the range from the neutron
star surface (s = 0) to the position where the distance equals
s = 12w =191 x 10°m.

The solid curve (case 1) shows that the gap is located
around the conventional null surface. However, the gap
shifts outward as j, increases, as the dashed (case 2) and
dash-dotted (case 3) curves indicate.

On the other hand, when j, increases, the gap shifts
inward and the potential drop, W(s,), reduces significantly.
For example, we obtain ¥(s,) = 7.1 x 10'? V for case 4,
whereas 1.7 x 10!3 V for case 2. A detailed physical inter-
pretation is given in § 6.1.

5.3.2. Gamma-Ray Spectra

We compute the GeV and TeV spectrum by the method
described in § 4. We adopt the cross-sectional area of
D, %2 = (6W)? for all the cases to be considered so that the
GeV flux in cases 1 and 2 may be consistent with obser-
vations. If D, increases twice, both the GeV and TeV fluxes
increase four times.

First, we consider case A, in which the IR spectrum is
approximated by synchrotron self-absorption (SSA)
with turnover frequency ~ 1.2 x 10** Hz. In this case, the

~
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F1G. 2—Distribution of E(s) for the Crab pulsar with «; = 45°; the
abscissa is in meters. The solid, dashed, dash-dotted, and dotted curves
correspond to cases 1, 2, 3, and 4, respectively (see text).
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pair-production optical depth 7 computed from equation
(63) becomes as presented in Figure 3. This result indicates
that the TeV flux is significantly absorbed above 1 TeV.

For the four different boundary conditions (cases 1, 2, 3,
and 4), we present the spectra of the outwardly and
inwardly propagating y-rays in Figures 4 and 5, respec-
tively. In GeV energies, the observational pulsed spectrum
is obtained by EGRET observations (open circles; Nolan et
al. 1993), while in TeV energies, only the upper limits are
obtained by Whipple observations (open squares; Weekes et
al. 1989; Reynolds et al. 1993; Goret et al. 1993; Hillas et al.
1998; Lessard et al. 2000), Durham observations (open tri-
angles; Dowthwaite et al. 1984), and CELESTE obser-
vations (open square at 60 GeV; J. Holder 2001, private
communication). The filled circles denote the unpulsed flux
obtained by CANGAROO observations (Tanimori et al.
1998).

It follows from Figures 4 and 5 that the TeV flux is unde-
tectable except for hv ~ 10 TeV. Around 10 TeV, the y-ray
flux is slightly less than or comparable with the obser-

o

optical depth

o b R | el alde ! Ll I

1010 1011 1012 1013

photon energy [eV]

Fi1G. 3.—Pair-production optical depth for the IR field represented by
SSA spectrum (case A).
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Fi1G. 4—Spectra of the outwardly propagating y-rays emitted from the
Crab pulsar magnetosphere when the IR field is approximated by a SSA
spectrum (case A). The solid, dashed, dash-dotted, and dotted curves corre-
spond to the same boundary conditions as in Fig. 2.
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D_perp= ©6W

flux [ergs/s/cm°2]
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F1G. 5—Same as Fig. 4 but the y-rays are inwardly propagating

vational upper limits for cases 1, 2, and 3 and exceeds the
limits for case 4. Nevertheless, we can exclude case 4 from
consideration because the expected GeV spectrum is very
very soft and is inconsistent with the EGRET observations,
whatever D, we may assume.

It is noteworthy that the GeV spectrum, which does not
depend on the assumed IR field, depends on j, and j, sig-
nificantly. In particular, in case 4 (as the dotted curves
show), the GeV emission significantly decreases and softens
because both the potential drop and the maximum of E
reduce as the gap shifts inward. As a result, it becomes
impossible to explain the EGRET flux around 10 GeV if the
gap is located well inside of the conventional null surface.

Next, let us next consider case B, in which the IR spec-
trum is interpolated from radio and optical pulsed fluxes. In
this case, the pair-production optical depth 7 computed
from equation (63) becomes as presented in Figure 6. There-
fore, the emitted TeV flux significantly reduces above 1 TeV.

The spectra of the outwardly and inwardly propagating
y-rays are presented in Figures 7 and 8, respectively. It
follows from the two figures that the TeV fluxes exceed the
observational upper limits for cases 2, 3, and 4. In case 1, the

o
=

optical depth

—] R | eememberedeabonik ool !
1010 1011 1012 1013
photon energy [eV]

F16. 6.—Pair-production optical depth for the single power-law IR
spectrum (Fig. 1) fitted between radio and optical bands (case B).
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F1G. 7—Spectra of outwardly propagating y-rays from the Crab pulsar
magnetosphere when the IR spectrum is interpolated from radio and
optical bands with a single power law (case B). Solid, dashed, dash-dotted,
and dotted curves correspond to the same cases as in Fig. 2.

upscattered flux is small because of its small N,, which is
proportional to j,,, = 0.01.

Let us briefly consider the case when the interpolated
spectrum (N, = 1.5 x 10!7 and « = —0.88) extends to
much higher frequencies and adopt € .. = 107> (or
1.2 x 10'° Hz). In this case, T > 2 holds above 0.2 TeV (Fig.
9); the absorbed TeV flux is thus suppressed below the
observational upper limits as Figure 10 indicates.

In short, we can conclude that the problem of the exces-
sive TeV flux does not arise if the IR field is represented by
an SSA spectrum (case A) or if the IR field is interpolated by
a single power law (case B) with a large cutoff energy
(GIR,max ~ 10_5)'

5.4. Dependence on Magnetic Inclination

To investigate how the results depend on the magnetic
inclination, we present the expected Crab pulsar spectra for
o; = 75° in Figure 11. The dashed and dash-dotted curves
correspond to cases 2 and 3, while the dash-dot-dot-dotted
ones correspond to the case of j; = 0.5 andj, = 0. Case 1 is

optical depth
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F1G. 9.—Same as Fig. 6 but with a large upper cutoff energy, €z o, =

105,
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Fi1G. 10—Gamma-ray spectra from the Crab pulsar magnetosphere for
case B but with a large upper cutoff energy, €z 1., = 107> Thick (or thin)
curves denote outwardly (or inwardly) propagating y-rays.
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F16. 8.—Same as Fig. 6 for the Crab pulsar with o; = 45° but the y-rays
are inwardly propagating.
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FiG. 11—Gamma-ray spectra from the Crab pulsar magnetosphere
with o; = 75°, when the IR field is approximated by an SSA spectrum (case
A). Thick (or thin) curves denote outwardly (or inwardly) propagating
y-rays.
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not depicted because the central energy of curvature-
radiated photons becomes comparable with B, m,c* =
90.8 GeV; in this case, its hard spectrum would be inconsis-
tent with the EGRET pulsed spectrum below 30 GeV and
the CELESTE upper limit at 60 GeV. Moreover, case 4 (i.e.,
j1 = 0andj, = 0.3) is excluded in Figure 11; this is because
the gap is located so close to the star surface that the inverse
Compton scatterings dominate the curvature process.

Comparing the GeV spectra in Figure 11 with those in
Figures 4 and 5, we can confirm that the curvature emission
becomes hard and luminous if o; increases. Its physical
interpretation will be discussed in § 6.2. In Figure 11, case A
is adopted as the infrared spectrum; however, the IR field is
not important when we discuss the curvature-radiated y-ray
spectrum.

It also follows from Figure 11 that the observed, pulsed
GeV spectrum can be explained if we take j, = 0.5 and
j» = 0 for a; = 75°. In other words, the curvature spectrum
becomes analogous between j, = 0.3 for «; = 45° (dashed
curve in Fig. 4) and j, = 0.5for o; = 75°(thick, dash-dot-
dot-dotted one in Fig. 11), if we fix j,,, = 0.01 and j, = 0.
That is, a greater j, is preferable for a greater «;. It is
natural, because the decrease of the distance of the intersec-
tion between the conventional null surface and the last-
open field line from the star surface (with increasing o;)
should be compensated by shifting the gap outward (with
increasing j,) so that the gap may have the comparable
magnetic and X-ray field strengths.

On these grounds, we can conclude that we cannot
decouple the effects of the magnetospheric currents (j,, j,)
and «;, if we compare only the fluxes of the outwardly pro-
pagating y-rays (when j; > j,). It would be possible to argue
that these two effects could be decoupled if we considered
the inward/outward flux ratio or the three-dimensional
structure of the accelerator. However, such details are not
pertinent to the main subject of this paper.

6. DISCUSSION

In summary, we have developed a one-dimensional
model for an outer gap accelerator in the magnetosphere of
a rotation-powered pulsar. When a magnetospheric current
flows into the gap from the outer (or inner) boundary, the
gap shifts inward (or outward). In particular, when a good
fraction of the Goldreich-Julian current density is injected
from the outer boundary, the gap is located well inside of
the conventional null surface; the resultant GeV emission
becomes very soft and weak. Applying this method to the
Crab pulsar, we find that the gap should be located near to
or outside of the conventional null surface so that the
observed GeV spectrum of pulsed GeV fluxes may be
emitted via a curvature process. By virtue of the absorption
by the dense IR field in the magnetosphere, the problem of
excessive TeV emission does not arise.

6.1. Gap Width versus Current Injection

By utilizing the gap closure condition (20), we can inter-
pret why W becomes significantly smaller when the gap is
located well inside of the conventional null surface (§ 5.3.1).
First, the X-ray density becomes large at small radii to
reduce A, in equation (20). Second, the ratio jg,,/jio:
decreases as j, increases. As a result, W decreases very
rapidly with increasing j,. When W decreases, N, decreases
to some extent; however, this effect is passive and cannot
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change the conclusion. On these grounds, the gap width
significantly decreases when particles are injected at the
outer boundary. Therefore, the potential drop also
decreases significantly.

On the other hand, when the gap is located outside of the
conventional null surface, the decreased j,,,/j;,x caused by
the increase of j; partially cancels with the increase of 4,
because of the diluted X-ray field. Thus, the gap width is
roughly unchanged when particles are injected at the inner
boundary.

6.2. Interpretation of the Magnetic-Inclination Dependence

In this subsection, we interpret the dependence of the
results on «; (in § 5.4). In Paper V, it was predicted that W
(= 2H in their notation) is a decreasing function of «; for all
12 pulsars considered. The reasons are fivefold:

1. With no current injection (ie., j, =j, =0 as con-
sidered in Paper V), the gap is located at the intersection of
the last-open field line and the conventional null surface,
where B, vanishes.

2. The intersection approaches the star if «; increases.

3. The density of the X-ray field illuminating the gap
increases as the intersection approaches the star (or, equiva-
lently, as r.,,, decreases).

4. It follows from the closure condition (eq. [20]) that
W oc A,/N,. If we neglect the variations in N,, W is pro-
portional to A,oc N, ~' ocr,,, ~2, where N, is the X-ray
number density. Therefore, W decreases with decreasing r_,,
and, hence, with increasing «;.

5. In reality, N, decreases if W decreases. As a result of
this “negative feedback effect,” the decrease of W for an
increasing «; is partially canceled. However, this effect is
passive; therefore, the conclusion of the decreasing W with
increasing «; is unchanged.

In Paper V, the GeV emission is predicted to become
hard and luminous as o; increases for the same set of jg,,, j1,
and j,. The reasons are fivefold:

1. The gap approaches the star (i.e., r ., decreases) as a;
increases for fixed j, and j, (say,j; = j, = 0 as considered in
Paper V).

2. The magnetic field in the gap increases as B oc ., >
when the gap approaches the star.

3. As a result of this rapid increase of B, E|| increases
(e.g., eq. [29]), despite the decreasing W, as stated in the
paragraph just above.

4. The increased E; for a larger «; results in a harder
curvature spectrum in GeV energies.

5. The potential drop in the gap is roughly proportional
to the maximum of E| in the gap times W. Because of the
“negative feedback effect” caused by N,, the weakly
decreasing W cannot cancel the increase of E . As a result,
the potential drop and, hence, the GeV luminosity increase
with increasing «;.

6.3. Super Goldreich-Julian Current

In this subsection, we briefly discuss the relaxation of the
limit of the current density flowing in the gap along the field
lines. In Papers L, I1, III, VI, in which j; = j, = 0 is assumed,
stationary gap solutions were found only for a small j,,,. By
the revised method presented in this paper, the solutions for
the Crab pulsar exist for j,,, < 0.0255, if we set j; =j, = 0.
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The solution of E(s) for j; =j, =0 and j,,, = 0.0255 for
the Crab pulsar when «; = 45° is depicted in Figure 12.
Because of the “brim” at the inner boundary, no solution
exists for j,,, > 0.0255. In this case, ji = jgap +Jj1 +Jj2 18
limited only below 0.0255, which is much less than the
typical Goldreich-Julian value, 1.

Let us briefly consider how much j,,, is needed for the
observed spin-down luminosity to be emitted. If we assume
that all the current flowing in the magnetosphere penetrate
the gap, then the net current becomes J = (Q/27)j,, ¥,
where W is the magnetic flux along which the current is
flowing. Assuming a magnetic dipole radiation, we obtain
the potential drop at the stellar surface as V, ~ Q¥/(nc).
The spin-down luminosity then becomes

. jior ()2
Eszxn~&%—T). (69)
c \=n
If the gap is geometrically thick in the transfield directions,
we may expect that the field lines thread the polar cap with
area A, = n(r, sin 0,)°, where r, refers to the stellar
radius and 0, to the colatitude angle between the magnetic
axis and the last-open field line. Utilizing sin® 6,/r, =
constant ~ Q/c for a dipole geometry, we obtain
Q

n e, (70)

pole ~

=
Ty
where u,, is the neutron star’s magnetic dipole moment.
Substituting equation (70) into (69), we obtain
. o Q42
Erot ~ Jtot 7 . (71)

For the Crab pulsar, Q*u2/c® = 1038-¢ ergs s 1; therefore,
Jiot ~ 1 is required so that the observed spin-down lumi-
nosity 103865 ergs s~ ! may be realized. Analogous conclu-
sions are derived for other rotation-powered pulsars.
Moreover, the sharp pulse of the Crab pulsar may imply
Apgre < 7(ry sin 0,)%; therefore, even j,,>1 may be
required. On these grounds, the limitation of j,, = jg,, < 1
derived for j; = j, = 0 was insufficient to apply to realistic
pulsars.

In this paper, we relaxed the limitation of j,,, by allowing
j1 or j, to be nonvanishing. The results of the predicted
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F1G. 12.—Distribution of E (s) for the Crab pulsar with o; = 45° when
= 0.0255,j, =j, =0.
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y-ray spectra are, therefore, more realistic as compared with
previous results obtained in Papers I, I, III, VI. However,
even in this treatment, j,, is limited below unity.

The next issue, therefore, is to consider whether we can
construct an outer gap model with super—Goldreich-Julian
current density (i.€., jz,, > 1). The Poisson equation (30) tells
us that solutions exist even for j; + j, > 1, provided that
j1 —Jj2» < 1.(For example, ifj, = j, > 1, the gap exists at the
conventional null surface.) In this case, W becomes much
smaller than those obtained for j; + j, < 1 because of the
gap closure condition (eq. [20]). In the case of the Crab
pulsar, the small W obtained for j; + j, > 1 fails the mono-
energetic approximation. To find solutions for j,, ~ j,
+ j, > 1, we could assume much smaller collision angles so
that the pair-production mean free path may become much
larger. To settle this issue, we must constrain the magnetic
field geometry around the gap and quantitatively infer the
collision angles between the primary y-rays and the second-
ary X-rays.

In short, stationary gap solutions exist even for a super—
Goldreich-Julian current. In this case, the collision angles
should be much less than W /w, . so that the emitted y-ray
flux may be consistent with observations for the young
pulsars for which the X-ray field is dense (like Crab). For
older pulsars with X-ray fields that are less dense, on the
other hand, we can in fact find solutions with super—
Goldreich-Julian current. This will be discussed in a sub-
sequent paper.

6.4. Comparison with Previous Works

Let us compare the present methods and results with
Paper V. In this paper, E |, N ,(s), and G (s, €,) were solved
from the Vlasov equations for a nonvacuum gap, while in
Paper V only E field was solved from the Poisson equation
for a vacuum gap, with the aid of W, which was deduced
from the gap closure condition. In the stationary gap, the
Vlasov equations automatically satisfy the closure condi-
tion; therefore, the obtained electrodynamic structures (e.g.,
W, E|) are essentially the same between the two papers,
provided that the gap is nearly vacuum (i.e., j,, < 1). By
relaxing the boundary conditions of the magnetospheric
current, and by solving the nonvacuum solution from the
Vlasov equations, we first find in this paper an interesting
behavior of the gap position: The gap shifts outward (or
inward) when current is injected from the inner (or outer)
boundary. The obtained GeV spectra are similar between
the two papers, unless the gap is located well inside of the
conventional null surface. In Paper V, the intrinsic TeV
spectra were depicted in Figure 6; on the other hand, in this
paper, the TeV spectra after absorption were depicted in
Figures 4, 5,7, 8, and 10.

We briefly compare the present method with ZC97, who
considered that the gap width is limited by the surface
X-rays caused by the bombardment of the particles pro-
duced in the gap. The magnetospheric X-rays considered in
this paper are much denser than the surface X-rays caused
by the bombardment. As a result, the localized gap in the
present paper produces less intrinsic TeV flux compared
with what would be obtained in the ZC97 picture.

6.5. Possibility of Another Solution Branch

For cases 1, 2, and 3, the intrinsic TeV luminosity is
comparable or less than the GeV one. Therefore, the



No. 1, 2001

Lorentz factors are limited primarily by the curvature
process (eq. [45]). For case 4, however, the intrinsic TeV
luminosity well exceeds the GeV one; therefore, the
radiation-reaction forces are caused by inverse Compton
scatterings rather than the curvature process. In fact, we
may expect a sufficient GeV flux via inverse Compton scat-
terings when the gap is located well inside of the conven-
tional null surface. This is because the dense X-ray field
will suppress the particle Lorentz factors (Paper II) and
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because the less-energetic particles scatter copious IR
photons into lower y-ray energies with large cross sections
(~or). There is room for further investigation on this issue.
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