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ABSTRACT

We quantitatively solve the problem of plasma supply to the stationary, axisymmetric, force-free mag-
netosphere of a rotating black hole residing in an active galactic nucleus. At the plasma source from
which both inflowing and outflowing charge-separated plasmas originate, the shortage of charge will lead
to the emergence of a strong electric field along the magnetic field line. The parallel electric field acceler-
ates migratory electrons and/or positrons to ultrarelativistic energies. These relativistic electrons/
positrons scatter background photons to produce high-energy y-rays that can materialize as pairs by
colliding with background photons. The produced pairs replenish the inflowing and outflowing charges
and are accelerated to result in a stationary pair production cascade. It is demonstrated that a sufficient
amount of plasma can be supplied for the Blandford-Znajek process to work effectively.

Subject headings: black hole physics — galaxies: active — galaxies: jets — plasmas

1. INTRODUCTION

The model of a stationary, plasma-filled magnetosphere
around a rotating black hole and/or its accretion disk has
been evoked to explain the extraction of energy in the vicin-
ity of a black hole and the formation of relativistic jets
observed in active galactic nuclei (Blandford 1976; Lovelace
1976; Blandford & Znajek 1977). For the recent observ-
ation of high-energy y-ray emission from active galactic
nuclei (AGNs), the Blandford-Znajek process is described
as a viable mechanism for energizing the y-ray jets (see, e.g.,
von Montigny et al. 1995 for a recent review of
observations).

In the y-ray-emitting region, relativistic jets must be
dominated by the kinetic energy flux of e* plasma over the
electromagnetic flux originating from the central engine. A
pair-cascade model of y-ray jets has been proposed by
Blandford (1993), Blandford & Levinson (1995, hereafter
BL95), and Levinson (1996 and references therein). Their
bulk jet dynamics for converting the Poynting flux to the
kinetic energy is as follows: Once the bulk motion of the jets
attains the Lorentz factor I' larger than the threshold
energy above which the opacity to pair production on the
background photons exceeds unity, copious pair pro-
duction would ensue, leading to a sharp increase in the
inertia and radiative drag acting on the e* outflow. This
phenomenon is expected to occur above the annihilation
radius r,,, for the e* plasma (BL95).

On the other hand, in the region well below r,,, where
rapid annihilation is dominating, the jet energy may well be
regarded as predominantly electromagnetic. Levinson
(1996) examined the structure of the “inner jet,” where the
Poynting flux is being converted to the kinetic flux. By
numerically solving the equation of motion for the bulk jet
coupled with the appropriate kinetic equations governing
the evolution of e* pair and y-ray number densities, he
showed that for steep spectra, such as the standard spec-
trum invoked by BL95, the acceleration scenario predicts
that the majority of the power extracted from the central
engine will be emitted as soft X-rays rather than being con-
verted into pairs and high-energy y-rays, as required by the
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observations. The spectrum incident on the inner jet must
be sufficiently flat.

The source of the electromagnetic power eventually
resulting in the y-ray jet may be the spin of the central black
hole (Blandford 1989, 1993). It is, however, the electric
current that sustains the electromagnetic power in the field-
dominated region of the magnetosphere, and it is charged
particles, even though inertia-free, that carry the electric
current. In other words, energy and angular momentum are
transported out of the horizon by the electric current that
can freely flow into and out of the horizon. However, even
though under the assumption of masslessness, it must be
real charged particles that constitute the electric current,
and because no particle can classically escape beyond the
horizon, electrons must flow into the horizon for the electric
current to flow out, and positrons must flow into there for
the electric current to flow in. We thus have to contrive a
process of plasma supply deep within the magnetosphere
that is somewhat different from the process of converting
the Poynting flux into pairs and y-rays in the jet much
above the horizon.

We assume a stationary axisymmetric degenerate force-
free magnetosphere around a rotating black hole. The
absolute space around the hole with the mass M and the
angular momentum J is described in a Boyer-Lindquist
spatial coordinate system with the two scalar functions o
and o (Macdonald & Thorne 1982; Thorne, Price, & Mac-
donald 1986):

2
ds? =der2 ¥ p2d0* + w?do

where
2GM
pP=r?+a’cos?0, A=r?— = r+a2,
¥?=(@r*+a>)?—a*Asin’ 0, w==sinb,
p
and
pAl? 2aGMr
o= ) , W= CZZ 5 (1)
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a is the spin parameter defined by a = J/Mc. The horizon
radius is denoted by ry = GM/c* + [(GM/c?)* — a*]'>.
Here o is the lapse function or the redshift factor and w is
the angular velocity of so-called zero angular momentum
observers (ZAMOs), which vanishes at infinity (« — 1) and
coincides with the uniform rotation of the hole, wy =
c3a/(2GMry), at the horizon (« = 0). The general relativistic
effects on the force-free magnetosphere appear through o
and .
Denoting the magnetic flux function as ‘¥, one can define
the poloidal magnetic field in terms of '¥':
VY
By— -, @
2nw

where e, is the unit toroidal vector. In the axisymmetric
system the electric field is purely poloidal, and assuming the
frozen-in condition, it is given by

Vg Qp —o

Epr= —— x Bp= — ¥
P cxP 27‘c(ch > 3)

where vy = [(Qr — w)w/a]e, is the rotational velocity of
field lines measured by ZAMOs and Q(¥) is the angular
velocity of field lines.

The charge density in the degenerate force-free magneto-
sphere is given by the Goldreich-Julian charge density;i.e.,

1 1 Qr—w

Par=4n V-Er= 4n v ( 2moc VT) @
everywhere except within the thin gap of the structure,
which is our main concern. Since v, and hence E, , changes
sign at the surface where w equals Q, one can easily antici-
pate that pg, also changes sign in the vicinity of this surface.
Some analyses reveal that pg; is negative far from the hole
and positive near the hole along field lines near the rotation
axis.

In a force-free magnetosphere, the “null surface” where
pgy vanishes could be regions with a strong electric field
(E|) sustained along a magnetic field line. If the charge
density p, differed significantly from pg; in any region, this
would cause E |, which would act to move available charge
into (from) the charge deficient (excess) region. However,
near the null surface, there is not enough available charge to

redistribute; this charge deficit leads to the emergence of
E,

A typical example of the distribution of the null surface is
depicted in Figure 1. As the figure indicates, the null sur-
faces (solid lines) nearly coincide with the surface of w = Qp
(dashed line). The magnetic field lines (dotted lines) are
assumed to be radial in this figure, because the force-free
transfield equation makes the field line structure be asymp-
totically radial for « -0 (Macdonald & Thorne 1982;
Okamoto 1992). For illustration purposes, ¥ is assumed to
be proportional to sin 2 0.

Under the existence of E |, The Poisson equation in the
gap reads

V- E” =4n(p, — pcy) » %)

where p, = e(n™ — n") is the charge density viewed in the
corotating frame of the magnetic field and is defined by the
difference between positive and negative charges. Orig-
inally, Blandford & Znajek (1977) suggested the cascade
mechanism for plasma supply. Migratory particles are
accelerated by the near-vacuum electric field E| induced by
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F1G. 1.—Distribution (side view) of the “null surface” where pg; van-
ishes around a rapidly rotating hole (@ = 0.9 and Q; = 0.5wy). The mag-
netic field lines (dotted lines) are assumed to be radial near the horizon. In
this figure, we adopt ¥ oc sin? 6. The null surface (solid line) almost coin-
cides with the surface of w = Q (dashed line), except in the middle lati-
tudes.

the rotation of the black hole, to relativistic energies, and
these accelerated particles then inverse Compton scatter
background photons from, e.g., the surrounding accretion
disk. The resulting hard y-ray photons collide with another
background photons, to produce pairs of electrons and
positrons, which fill the magnetosphere.

In spite of the core significance in feeding a relativistic
y-ray jet from the central engine, the real process of supply-
ing charged particles in the magnetosphere has not been
substantiated for a realistic model of radiation field in
AGNs until Beskin, Istomin, & Par’ev (1992). For the
typical parameters of the central radiation in AGNs, they
estimated the width of the region of plasma production and
the particle energies in it.

The purpose of this paper is to further extend the analysis
of Beskin et al. (1992) and to clarify more quantitatively the
micro process of interaction of radiation—pair creation
under the existence of parallel electric field.

In the next section, we formulate basic equations describ-
ing a pair production cascade in the magnetosphere. We
then solve them in § 3 and demonstrate that a sufficient
amount of plasma is supplied by the cascade so that hole’s
rotational energy may be extracted effectively. In the final
section, we sum up the results and discuss the differences
from Beskin et al.’s.

2. PAIR PRODUCTION CASCADE MECHANISM

In this section, we describe how a pair production
cascade proceeds in a thin gap in the force-free magneto-
sphere. We first discuss physical processes in the potential
gap leading to the cascade in § 2.1. We next formulate basic
equations in § 2.2, discuss nongray analysis of the y-ray
distribution in § 2.3, and introduce boundary conditions in
§2.4.

2.1. Physical Processes

As we have discussed in the previous section, E, the
longitudinal electric field, can no longer been screened near
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the null surface from which both the inflowing and out-
flowing charge separated plasmas originate, and a thin elec-
trostatic potential gap will be formed there. Although B,
may, in general, be oblique to the gap surface, we consider
the perpendicular case in which the acceleration of e*s by
E, and hence the pair production cascade, will work most
effectively. We can then rewrite the Poisson equation (5)
into the form

dE,
dx

where x is the outwardly increasing coordinate perpendicu-
lar to the null surface. For a spherical shape of the null
surface, for instance, x is related with r as x = (r — ry),
where r, is the radius at which pg; exactly vanishes. More-
over, as we shall see in § 3.1, the width of the potential gap in
which E | is significant may be regarded as very thin com-
pared with the hole’s radius, r; ~ 10*3-3(M/10® M) cm.
Therefore, we can expand pg,(x) around x = 0 and obtain

dE,
dx

where A is the expansion coefficient of pg; at x = 0 and on
the order of Qp B/(2nce). For a spherical null surface, again,
we have A = 0,(pg;) at x = 0.

In the potential gap, the e*s will rapidly lose their per-
pendicular momentum owing to Compton scatterings with
ambient UV photons. (Unlike in a neutron star magneto-
sphere, synchrotron loss is negligible in a black hole magne-
tosphere because of its weak magnetic field.) However, their
longitudinal motion will be maintained by the electrostatic
acceleration due to E| field. Therefore, the motion of a
single e™ or e~ can be approximated one-dimensionally and
obeys

=4nfe(n” —n") — pgil » (6)

=d4nfe(nt —n") — Ax], 1)

m, c? ar_ eE, —(* — 1Yo, U,, )

7 dx

where I' is the Lorentz factor of longitudinal motion, g is
the Thomson cross section, and U, is the energy density of
the background radiation field. The second term, which rep-
resents the Compton drag, may be overestimated to some
degree; however, this simple expression has an advantage
for our investigation of pair production mechanisms.
Except for the vicinity of the boundaries of the gap at which
E vanishes, the right-hand side of equation (8) cancels itself
in the leading order. Therefore, the longitudinal Lorentz
factor attains its terminal value:

_ / eE (x)
I'x)= [1+ —O'T U,

E,(x) 1/2 U -1/2
=5 x 103 —- : . 0O
8 |:103 A m_1:| 10° ergs cm 3 ©)

Note that we consider the case of E; > 0 in this paper.
Newly created e*s may have perpendicular momenta;
however, they lose such momenta by scattering background
radiation photons in a length

2 2
I'm,c m,c

drae 1—‘ZO-T Ub A/ eEH(x)O'T Ub
% < E”(x) U,

10> Vm~! 10° ergs cm™

=2.5x 108

3>_1/2 cm . (10)
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This length is smaller than the Compton mean free path at
which e*s scatter a background X-ray photon to produce a
y-ray photon that can lead to a pair production, I, ~ 10*°
cm. We will confirm in § 3.1 that [, is shorter than the gap
half-width, H. It is possible to introduce two approx-
imations from the fact I, < I, < H: The e*s migrate one-
dimensionally and their motion is monoenergetic with a
single Lorentz factor I'(x). The reason why [,,,, < . holds is
that not only X-ray photons but also UV photons contrib-
ute to the drag. Therefore, for a very hard spectrum (x < 1),
lyrag TOughly equals I, and the two assumptions presented
above break down. The e*s moving with a Lorentz factor
such as given by equation (9) can emit high-energy y-ray
photons neither by curvature radiation nor by synchrotron
radiation. Nevertheless, these e*s can produce sufficient
amount of high-energy y-ray photons via inverse Compton
scatterings of background X-ray photons (Beskin et al.
1992). In fact, from the energy conservation, the e*s can
produce y-ray photons with energies up to

10?

Next, we focus attention on whether such y-ray photons
collide with background X-ray photons to produce pairs. In
order that a y-ray photon may produce an e* pair by collid-
ing with a background X-ray photon with energy m, c’e,,
the y-ray energy m, c’e, must satisfy

I'm,c* = SO(L> MeV .

€,€ >L (11)

where u is the cosine of the colliding angle between the y-ray
and the soft X-ray. The minimum y-ray energy that can lead
to a pair production is obtained by considering a head-on
collision (u = —1) with the most energetic soft photon
(€, = €may)- That is, only y-rays with energies above €'* =
1/€,.x can contribute to a pair production. If we take, for
example, €., =30 keV/(mc?) = 5.87 x 1072, we obtain
m, ¢’ = 8.7MeV, which is much less than the maximum
y-ray energy produced by the inverse Compton scatterings,
I'm, c* ~50 MeV. Therefore, it seems reasonable to
suppose that the y-ray photons can produce the e* pairs
that lead to a pair production cascade in the potential gap.

So far, we have seen that relativistic e*s accelerated in the
potential gap upscatter background X-ray photons into
y-ray regimes and that such y-ray photons collide with
background X-ray photons to produce pairs, which may
lead to a cascade. It is, moreover, entirely fair to say that
e*s and y-ray photons move one-dimensionally along the
magnetic field and that the e* spectrum is monoenergetic at
a certain position. Under these conditions, we formulate
basic equations describing the pair production cascade in
the next subsection.

2.2. Basic Equations

Let us first consider the continuity equations of e*s. For
simplicity, we shall suppose that positrons are migrating
outward while electrons are migrating inward. Such a situ-
ation will be realized in the low latitudes in Figure 1. In the
high latitudes, on the other hand, e®s migrate in the
opposite direction. However, the same formulation as pre-
sented below can also be applied, if one notices that not
only the sign of (n* — n~) but also those of both dE, /dx
and pg; in equation (6) change in the high latitudes. That is,
the treatment made in this paper is valid irrespective of
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whether E| orients outward or inward. We consider the
former case alone.

Under the assumption described above, all positrons
(or electrons) migrate outward (or inward) with speed
c[1 —1/T?(x)]'* because we are considering mono-
energetic spectrum of e*s. Thus, the continuity equations
become

d[ . 1
e

_ J Cne)F (5 €) + F(x, €)lde,, (12)

where the angle-averaged pair production redistribution
function 7, is defined by

r’p(ey) - J‘ dﬂJ\ O'P B (13)
2/I(1 - u)ey]
op=— 3 aT(1—u2)[(3—u4)1n1 +']—2 2—v )], (14)
2 1
- s 15
e €)= 177 (1)

(see Berestetskii, Lifshitz, & Pitaevskii 1989). Here o refers
to the cross section for pair productlon in a colhs1on
between photons with energies m,c*¢, and m,c’e, and
moving at an angle cos™! u to each other n+(x) 1ndlcates
the number density of outwardly moving particles, that is,
positrons in this case, while n™(x) indicates that of inwardly
moving particles, that is, electrons. F*(x, €,) are the number
density of y-ray photons propagating in the + x-directions,
respectively, at a position x and in the nondimensional
energy interval €, ~ €, + de,; dN/de, refers to the number
density of background soft photons in the nondimensional
energy interval €, ~ €, + de,. Only when two colliding
photons satisfy condition (11) does g, has a nonvanishing
value. It must be noted that the y-ray photons, which are
produced by the inverse Compton scatterings, are highly
beamed in the same direction of e*’s one-dimensional
motion. That is, their distribution functions can be fully
described in terms of F* and F~.

We can easily see that the current, which is carried by e*s
along a given field line, is conserved along x. From one
combination of equation (12), we have

{[n+(x)+n(x)]/ =6 )} 0,
which y1elds

')+ ] [1- g =2, 9

where the current density j, is constant along a field line. In
order that the energy and angular momentum may be
extracted effectively from a rotating supermassive black
hole, j, must take the value of

13 M B _,
~ 10~ < )(108 >(104 G) abamp cm™“ . 17

in order of magnitude (e.g., Thorne et al. 1986). (If we multi-
ply ¢ = 3 x 10'° cm s~ to this value, we obtain a current
density in the unit of statamp cm~2) The other com-
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bination of equation (12) gives

{[n*(x)—n 1.1 - F}( )}

= ijnp(ey)[FJ“(x, €)+ F(x,€)lde, . (18)
o

Instead of equation (12), we use equations (16) and (18) in
what follows.

We next derive the Boltzmann equations for the y-ray
photons. As we noted in the previous subsection, we may
regard the y-ray photons as directed only in the +x-
direction. Thus, the y-ray distribution functions F* obey

;F (x, €)=n.n* /1—%—111,Fi, (19)

where n.(€,, I') is the Compton redistribution function
defined by

0 = J e, ‘ZN oenes D)0, — T2 ;.  (20)

the Klein-Nishina cross section oyy is defined by (e.g.,
Rybicki & Lightman 1979)

oxn(2) = % aT{l—tZ [722(1 ") g+ 22)]

z 142z
In(1 + 22) 1+3z
L a+ 22)2} ’ @1)

Here, we implicitly assumed that the energy transfer from a
positron or an electron with a Lorentz factor I" to a photon
with incident energy m, c’¢, is roughly m, ¢*T ¢, in equation
(20); this treatment will be justified in order of magnitude.
Of course, we could in general take its dependence on inci-
dent and scattered angles of photons into account and use a
more precise Compton scattering kernel. However, to
follow up such a detailed, complex argument further would
take us beyond the scope of this paper. So, we adopt
equation (20) as a Compton redistribution function.

The migrating e*s and the y-ray photons in the gap are
described by differential equations(7), (8), (18), and (19). It is
worth noting that n* and n~ are related by equation (16)
and that equation (19) contains two independent equations.
To integrate these five differential equations, however, we
need to make some assumptions about the background
radiation field.

We shall suppose that the spectral number density of
background radiation per unit interval of €, can be rep-
resented by a single power law; i.e.,

dN
— =Clwe; ", 22)
de,
where C(«) is a decreasing function of « and is defined by
2—ua U,
Cla) = ; 23
@)= €22 — e tm,c*’ @3)

max min

€max and €., are the cutoff energies of the above spectrum.
In what follows, we shall adopt

€. = 33lkev —587x 1072, 24)

e




No. 2, 1998

1
€ = O—CY =195 x 1075 . (25)
m,c

The energy density of the background radiation field, U,
can be estimated as
L,/c
4n(5ry)?

M \YL
=147 x 10° b “3 26
8 <108 M®> <LEdd> ergs om ’ ( )

where L;/Lg44 is the luminosity of the background radiation
field normalized by the Eddington luminosity Lgqq = 1.25
x 10*6(M/108 M) ergss™ 1.

Uy

2.3. Nongray Analysis of y-Ray Distribution

Since the redistribution function #, varies with €, we
cannot adopt a gray approximation for y-ray distribution to
solve the Boltzmann equations. Therefore, we will divide
the y-ray energy range into many bins and approximate 7,
with its typical value in each bin.

Let B; and §;_; be the upper and lower limit of the ith
nondimensional energy bin. Then taking f; to be sufficiently
close to f;_;, one can approximate integrals in the right-
hand side of equation (18) with the summation of the fol-
lowing integrals over each bin:

Bi
L._ np(ev)Fi(x’ ey)dey ~ np,ifltt(x) s (27)

where
i-1+ B
rlp,i = np<%> s (28)

fE) = jﬁi F(x, €)de,. (29)
B

i—1

Then, instead of equation (18), we use

df( . I
E{[" (x) —n"(x)] I_IT(x)}

=23 1, /769 +f7 9], (30)

where m refers to the number of energy bins. Likewise, inte-
grating equation (19) on ¢, from B;,_; to B(>pf;_,), we
obtain

d .. . I
+ ) = 1O, 1~ s

- np,if;i—(x) > (l = 17 23 ey m) s (31)
where

Bi
rlc,i(r) = J nc(ey: F)dey . (32)

Bi-1

Consequently, we have a set of differential equations con-
sisting of equations (7), (8), (30), and (31).

2.4. Boundary Conditions

The purpose of this paper is to elucidate the physical
processes of the pair production cascade. To achieve this
end, as a first step, we consider in this paper the case in
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which the functions E |, T', n*, and f* have such symmetric
properties as described below.

First, E(x) should not change its sign in the gap and
vanish at the two boundaries. Therefore, taking into
account the fact that the width of the gap is very thin com-
pared with rg, we assume that E is an even function of x;
ie.,

E|(x)=E (—x). (33)
We also assume that I'(x) has the same symmetry:
I'x)=T(—x). (34)
Second, from the assumption of symmetry, we impose
nt(x)=n"(—x). (35)
The same may be true of y-ray photons; we thus assume
F'(x,e)=F7(—x,¢€). (36)

The solutions obtained under these symmetry properties
will not miss the essential features of the pair production
cascade in the black hole magnetosphere. In view of these
symmetry properties, it follows that it is sufficient to solve
equations (7), (8), (30), and (31) only in the range 0 < x < H.

Let us now return to the derivation of boundary condi-
tions at x = 0 and x = H. In the first place, from equations
(8), (33), and (34), we have dI'/Jdx =0 at x = 0, which is
equivalent to

E, = "TeU” T2 atx=0. (37)

In the second place, equations (35) and (16) give

on* /1—%:’; atx=0. (39)

Furthermore, we replace condition (36) for each €, with
fi=f (=12 ...,m atx=0, 39)

where f are defined by equation (29).

Let us next consider the conditions at the outer boundary
of the gap. First, the free boundary, x = H, is defined so that
E| vanishes there. That is,

E”=0 atx=H. (40)

Second, any inwardly propagating particle (i.e., electrons in
this case) should not come into the gap from the outside
(x > H). This requires n~(H) = 0, which combines with
equation (16) to yield

-
nt /1_F:f;° atx=H . 41)

Third, the charge density distribution must be continuous
at x = H. We therefore impose from equations (41) and (7)

1 dE / 1
— — 7 —_—— el p— 42
1 —Jo/ 1 ;—Ax=0 atx=H. 42)

Finally, no y-ray photons come into the gap from the
outside; therefore we readily find

fi =0 (=1,2,....,m) atx=H. 43)

We thus obtain total (2m + 5) boundary conditions
(37)43) for the (2m + 3) unknown functions E(x), I'(x),
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longitudinal electric field (V/m)
500

X/(0.001r_H)

FI1G. 2—Variation of E| as a function of the position x along the field
line when U, = 10° ergs cm 2 and o = 2.0. The abscissa is normalized by
10~ 3y, where ry; = 10'3-5(M/10® M) cm is the horizon radius. The solid
line represents the solution of which derivative vanishes at x = H with the
“critical” current density j, = j,. The dashed line corresponds to j, =
0.992j_, and the dotted line to j, = 1.0004j,.

n*(x), and ff(x) i=1,2,...,m) and two additional
unknown constants H and j,. The reason why we regard j,
as a unknown constant to be solved rather than an external,
free parameter will be explained in detail later in this sub-
section.

To investigate the pair production mechanism, it is suffi-
cient to consider y-ray photons with nondimensional ener-
gies satisfying

1—pue

of which the minimum value is 1/¢,,,. Photons below this
threshold energy 1/e,,,, never contribute to pair pro-
ductions, and hence we may put the lower limit of the
lowest energy bin, B, m, ¢, to be m, c¢?/e,.. = 8.7 MeV (i.e.,
Bo = 1/e,..,). For the present purpose, it is actually enough
to divide the range of €, into 13 bins and set f;, = 1.5/¢,,,,,
ﬁz = 2/emax’ BS = 2'5/€max! ﬁ4 = 3/€max9 BS = 4/€max3 ﬁ6 =
5/emaxa ﬁ7 = 10/€max, ﬂS = 20/€max, ﬁ9 = 30/€max’ BIO =
40/€max, ﬁll = 5O/emax, ﬁ12 = 60/€max’ and ﬁ13 = 70/€max' As
we shall check in § 3.2, high-energy y-rays (e, > 10/e,,,,)
have little influence on the structure of the gap because of
their small number density, so that their energy bins are cut
coarsely. Moreover, it is enough to put the upper limit of
the highest energy bin, f,5m,c?, to be 70/e,,, = 609MeV
for the same reason.

We shall seek the solutions satisfying the boundary con-
ditions (37)—+(43), making use of a shooting method. The
calculation starts from x = 0 with conditions (37)~(39) and
is terminated at the free boundary at x = H with conditions
(40), (41), and (43). In general, condition (42) is not satisfied.
To solve this problem, in this paper, we adjust j, so that
condition (42) may be satisfied.

In a realistic model of a black hole magnetosphere, the
electric current flowing along each field line will be deter-
mined by a global requirement rather than by microphysics
in a localized thin gap, that is, by connecting the load of an
outgoing wind or jet to the black hole unipolar inductor
(e.g., Thorne et al. 1986). For mathematical simplicity here,
we assume that the central point of the gap is located at the
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“null surface” where pgy exactly vanishes and impose the
symmetry properties around this central point. That is,
instead of solving the position of the “inner boundary”
(x = —H for a symmetric case), we treat j, as a sort of an
eigenvalue in a boundary value problem and determine j,
together with the “ outer boundary ” position x = + H. The
analysis made in this paper under the symmetry is, never-
theless, of significance in the sense that we demonstrate
explicitly and quantitatively the presence of a stationary
pair production cascade in a black hole magnetosphere.
Moreover, it will later turn out that the values of j, adjusted
in the way described above are consistent with what are
required for effective energy extraction from rotating super-
massive black holes.

The actual scheme is as follows: For very small values of
jo, for which |n* — n7| is also very small, equation (7) can be
approximated as

E,

~ —4nAx 45
I (45)
Integrating this, we obtain

This quadratic solution cannot fulfill condition (42). As j,
increases significantly, the first term on the right-hand side
of equation (7) also increases monotonically with x. There-
fore, the shape of E | (x) deviates significantly from equation
(46), producing a “brim,” as indicated by the dashed line in
Figure 2, in which we choose U, = 10° ergs cm™* and
o = 2.0. As j, increases further, dE/dx at x = H decreases
and vanishes at a certain value j. (U,, o). For example, when
U,=10° ergs cm * and o=20, j, becomes
7.4145 x 10™'° abamp cm 2. The solution E(x) in this
case is depicted by the solid line in Figure 2. Above the
critical current density j.,, condition (42) could not be satis-
fied, no matter what initial values of I'(0), n~(0), and
fi0)i=1,2,...,13) we choose. This situation is shown by
the dotted line in Figure 2.

To sum up, we shall seek the solutions satisfying equation
(42) by adjusting j, to j.(U,, ). The resulting system is,
then, formed by 29 differential equations (eqs. [7], [8], [18],
and [31]) for 31 unknowns (E, I, n*,f,f5,...,f i3, H,
and j,). These should be integrated under 31 boundary con-
ditions (eqs. [37]-[43]).

3. STRUCTURE OF THE POTENTIAL GAP

In the preceding section, we formulated the basic equa-
tions and described the procedure to solve them under suit-
able boundary conditions. Adopting plausible values of
external parameters o and U,, we are now able to solve
these equations and investigate the structure of the gap. To
begin with, we present typical results of numerical solutions
and demonstrate how the current density j, = j., which
sets the rate of the energy extraction from the hole and
ensures condition (37), varies with « and U, in § 3.1. Then
we describe somewhat detailed structure of the gap in § 3.2.

3.1. Critical Current Density

To grasp the rough feature, we first show some examples
of the solutions of E (%) in Figure 3. For a fixed value of
U, = 10° ergs cm 3, we depicted the three cases of o = 1.5,
2.0, and 2.5 denoted by the dashed, solid, and dotted lines,
respectively. This figure indicates that E is reaches a
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3000 4000
T

longitudinal electric field (V/m)
2000

1000

X/(0.001r_H)

F16. 3.—Examples of longitudinal electric field E(x). The abscissa is
normalized by 10~ 3r,. The solid line represents the solution correspond-
ing to « = 2.0 and is identical with the solid line in Fig. 3. The dashed and
dotted lines to « = 1.5 and 2.5, respectively. The energy density of the
background radiation field is fixed to be U, = 10° ergs cm ~ 3.

maximum at the symmetry point, x = 0, decreases mono-
tonically with increasing x, and finally vanishes at the
boundary, x = H. As we have discussed in § 2.4, the solution
E|(x) has a “brim” that makes its derivative at the outer
boundary vanish.

Next, let us consider the Lorentz factor I'(x). The result is
presented in Figure 4; the parameters are the same as we
have chosen in Figure 3. As Figure 4 indicates, the typical
values of I become several hundreds. This result can be
easily understood if we notice that I'(x) is related to E (x) by
equation (8). In most of the gap, except for the vicinity of the
boundaries, the right-hand side of equation (8) vanishes in
the leading order to give I' = (eE /o U,)"/?. Actually, very
close to the boundaries, the monoenergetic approximation
is no longer appropriate [ie., I' # (eE, /o U,)'/*]; there-
fore, we must solve the energy dependence of the distribu-
tion functions of e*s. However, such detailed argument of
the e* distribution at the boundaries will not be essential
for the whole structure of the gap, because the outflowing
e*s at the boundaries cannot produce y-rays that can lead
to pair production in the gap.

400
T
I

Lorentz factor

X/(0.001r_H)

F1G. 4—Examples of Lorentz factor I'(x). The solid, dashed, and dotted
lines correspond to the same parameters chosen in Fig. 3.
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As Figures 3 and 4 indicate, the typical half-width of the
potential gap is H ~ 0.005r for the background radiation
field of U, = 10%rgs cm ~ 3. However, H has a strong depen-
dence on U,. This is because the pair production mean free
path [,, which essentially describes H together with the
number of y-rays (N,) produced by a single e* or e~ via
inverse Compton scatterings, strongly depends on U,. That
is, the chance of a y-ray photon to collide with background
soft photons is proportional to U,; as a result, [, increases
with decreasing U,.

The results of H versus o« and U, are summarized in
Figure 5, which is one of the main results of this paper. The
solid line indicates H versus o for U, = 10° ergs cm ~ 3, while
the dashed one is for U, = 10° ergs cm 2. This figure indi-
cates that H decreases with o for small « (ie., hard
spectrum), but it increases for large « (i.e., soft spectrum).
The key point in understanding this behavior is that H is
described by [,/N,, pair production mean free path divided
by the number of y-rays produced by a single e* ore™.

Let us evaluate [, and N, at x = H. Asf;"(x) and 1 ; have
already been solved, we can compute [, from

13 +

l — Zl=i3np,1{1 (H) . (47)

L i1 fi (H)
For U, = 10° ergs cm ™3, log,, l,/ry versus o at x =0 is
depicted by the dash-dotted line in Figure 6. As expected, [,
increases monotonically with «, because the number density
of target X-ray photons decrease when the spectrum
becomes soft.

The variation of log ,, N, ! is expressed by the dotted
line in Figure 6, where N, is calculated from

e 13
N,=— ) fi(H); (43)
Joi=1

N, increases (N, ' decreases) with «, because the seed UV
photons increases as the spectrum becomes soft.

Having observed the variations of [, and N, we can then
go on to consider [,/N,. Figure 6 tells us that log;,
(I,/ry)/N,, which is plotted by the dash-dotted line, becomes
minimum for o ~ 2. Moreover, [,/N, describes very well the
width of the gap H, of which logarithmic values are plotted
by the solid line.

We have seen in this subsection how H depends smoothly
on U, and a. Once that is understood, we are in a better
position to evaluate j, = j.(U,, @), the conserved current
density that carries energy extracted smoothly from the

0.009
0.008
0.007
0.006
0.005
0.004
0.003

Gap half width

photon index

Fi1G. 5—Gap half-width H vs. photon index o. The ordinate is normal-

ized by the hole’s radius, r; = 3 x 10'* cm. The solid line describes H(x)

for U, = 10° ergs cm 3 and the dashed line U, = 10° ergs cm 3.
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photon index

F1G. 6—The curve of I («)/ry at x =0 for U, = 10° ergs cm™>. The
solid line represents log, , (H/ry), and the dashed, dotted, and dash-dotted
lines represent log,, N ! log,, l,/ry,and log,, (I,/rg)/N,, respectively.

hole. Equation (42) gives
jcr(Uba OC) = AH: (49)

this approximation is valid, because I'(H) > 1 holds in the
gap. Therefore, j, =j.(U,, ®) can be easily depicted as
Figure 7. This figure reveals the fact that the pair production
cascade provides sufficient current density for the effective
energy and angular momentum extraction from a rotating
supermassive black hole, especially when the background
spectrum is soft. Moreover, j.., which sets the rate of extract-
able energy due to the Blandford-Znajek process, becomes
large for a less luminous radiation field.

3.2. Detailed Structure of the Gap

Let us now look deeper into other properties of the solu-
tions. First, examples of current densities en®(x)(1 — 1/
I'%)!/2 are presented in Figure 8; the parameters are the
same ones we chose in Figures 3 and 4. The currents density
carried by positrons (or electrons) are depicted by the thick
(or thin) lines. The current density difference e(n™ — n™)
x (1 — 1/T%)'/2 increases monotonically with x and reaches
its maximum value j, at x = H, because n~ (H) = 0.

Second, an example of F*(x, €,) is shown in Figure 9 for
U, = 10° ergs cm 3 and « = 2. To avoid complexity, the

0.35F \

o
w

0.25

o
N

0.15

critical current density

o
[Eny

1 15 2 25 3

photon index

Fi1G. 7—Critical current density vs. o. The solid line indicates j(«) for
U, = 10° ergs cm > and dashed line for U, = 10° ergs cm 3. The ordinate
is normalized by 10~ 13 abamp cm ™2 (cf. eq. [17]).

-3

4x10

3x1073

-3

Current carried by positrons and electrons
2x10

1073

X/(0.001r_H)

Fi1G. 8—Examples of current densities carried by positrons (thick lines)
and by electrons (thin lines) as a function of x. The abscissa is normalized
by 10~ 3r; and the ordinate by 10~ '* abamp cm 2. The solid, dashed, and
dotted lines correspond to the same parameters chosen in Fig. 3.

energy bins are combined into four: the solid line describes
y-ray number density with energies 1/€,,,,, < €, < 2/€,,,, the
dashed one with 2/e,,,, < €, < 10/e,,,,, the dash-dotted one
with 10/e,,,, <€, <40/e,,,, and the dotted one with
40/€pay < €, < 70/€,. We can see from this figure that
most of the y-ray photons are produced in the energy range
below 10mc?/e,,, = 87 MeV. It must be noted that we
could not detect these y-ray photons because its total lumi-
nosity is as small as 10%* ergs s 1. The purpose of this paper
is to demonstrate that the pair production cascade station-
arily supplies a sufficient amount of plasma and enables the
energy extraction from a rotating black hole. Therefore,
how to produce copious and observable y-ray photons is
not our present concern. They should be produced at more
distant regions at several hundred AU (Dermer & Schlickei-
ser 1993; Schlickeiser & Dermer 1995; BL95; Levinson
1996; Bottcher & Schlickeiser 1996; for ~0.4 and less than
0.2 MeV line production, see Skibo, Dermer, & Ramaty
1994)

0

Garmma—ray Flux

X/(0.001r_H)

FiG. 9—An example of log,, F*(x, €,). The abscissa is normalized by
107 3r. Thick curves denote the fluxes of y-rays propagating outward and
thin curves those propagating inward. The solid, dashed, dash-dotted, and
dotted lines represent the fluxes in the energy range 1/e,,,, <€, <2/e
2/€max < €, < 10/€,y, 10/€,,, < €, < 40/€,,,, and 40/e,,, < €, < T0/€,,,,,
respectively. Parameters are chosen to be o = 2.0 and U, = 10° ergs cm 3.

max>
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F1G. 10—Number of y-rays produced by a single e* or e”, N, as a
function of «. The solid line denotes N.(x) for U, = 10° ergs cm > and the
dashed line for U, = 10° ergs cm 3.

Finally, we shall investigate the number of y-ray photons
produced by a single electron or positron, N,. Evaluating
N, in equation (48), we summarize N, versus « and U, in
Figure 10; the parameters are the same ones as we choose in
Figure 5. This figure shows the fact that one electron or
positron produces typically 102-103 y-ray photons, that can
materialize as pairs. To put it more precisely, N, increases
with increasing «, because the “seed” photons increases
when the spectrum is soft. It is interesting to note that N,
increases with decreasing U,. It looks seemingly controver-
sial; however, a less luminous radiation field increases the
drag length l,,,,, and hence E (x) and I'(x). As a result, the
energetic e*s upscatter more soft photons into the energy
range €, > 1/e,,,,, above which y-ray photons collide back-
ground X-ray photons to produce pairs. It is for this reason
that N, increases with decreasing U,.

4. SUMMARY AND DISCUSSION

In this paper we quantitatively and self-consistently
solved the stationary process of a pair production cascade
in a thin gap in a rotating black hole magnetosphere. We
summarize our results as follows:

1. Under the force-free approximation, the possible posi-
tion where the electric field along a magnetic field line, E |,
arises near the “ null surface ” where pg; vanishes.

2. Once E arises, it accelerates migratory or pair-
created e*s into ultrarelativistic energies with Lorentz
factors ' = 10%-5-10%.

3. An accelerated e* or e scatters background UV and
X-ray photons to produce 10-10° y-ray photons of which
energies exceed the threshold of pair production.

4. Typically, one of such y-ray photons (produced by a
single e* or e”) collides a background X-ray photon to
produce an e® pair, which leads to a pair production
cascade.

5. The cascade supplies sufficient amount of pair plasma
necessary in maintaining the electric current in the magne-
tosphere and thus ensures efficient extraction of the hole’s
rotational energy in the form of electromagnetic energy.

6. The half-width of the potential gap (2H) in which the
cascade proceeds is much less than the hole’s radius, ry.
Therefore, the expansion of pg; at x = 0 in equation (7) is
self-consistently justified.

It will be necessary to make clear the differences between
this work and the previous work of Beskin et al. (1992).
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They implicitly assumed that all of the y-ray photons
created by the inverse Compton scatterings contribute to
the cascade, and they explicitly put [, ~ I, ~ H. However,
as seen in § 3, [, is much larger than [, and H. This means
that very small fractions of y-ray photons are enough to
maintain the cascade, and most of them escape freely from
the gap. This situation is similar to the pair production
cascade that is expected to occur in pulsar magnetospheres
(e.g., Daugherty & Harding 1982), but it might be dissimilar
in that the y-ray photons from the gap will be unobservable,
because, as should be so, the y-ray flux going out of the gap
is negligibly small compared with the outgoing Poynting
flux from the hole. Owing to such a difference, Figure 5
differs qualitatively from Figure 6 in Beskin et al. (1992).

In addition to the above difference, we explicitly solved
the y-ray distribution functions by considering their spec-
trum as shown in Figure 9, whereas in Beskin et al. (1992)
the treatment is not explicitly mentioned. It is in fact impor-
tant to take the y-ray spectrum into account, because [,
which essentially controls the gap width together with N,
depends strongly on y-ray energies. However, these y-rays
could not be observed as we have mentioned.

Let us briefly discuss the consistency that the existence
of the plasma source gap should not significantly
affect the global magnetospheric structure. For one thing,
as we have seen, Figure 5 indicates that the half-width
of the gap (H) is much smaller than the global length
scales, such as ry. What is more, as Figure 11 indicates,
the electric potential drop in the gap is sufficiently small
compared with the total electromotive force (EMF),
~10'°V(a/M)(M/10® M ;)(B/10* G). Even for the less lumi-
nous case of U, = 10° ergs cm >, in which current density
jo allows the most effective energy extraction from a
rotating supermassive black hole, the potential drop in the
gap is as small as 0.1% of the total EMF.

It will be of interest to contrast the cascade processes of
producing y-rays and e* plasma presumed to operate in the
two different locations. The first one is necessary to main-
tain the Poynting flux throughout the force-free domain, by
working in the much localized thin gap deep inside the
magnetosphere just above the horizon. The plasma in the
gap is more or less charge-separated, and the charge density
is less than pg;. On the other hand, the second works on a
much more large scale, much above the horizon, to convert
the Poynting flux to the kinetic energy of bulk motion of the
jet above which is superposed the relativistic motion of e*
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Fi1G. 11.—Total voltage drop in the gap as a function of . The solid line

corresponds to the case of U, = 10° ergs cm > and the dashed line to that

of U, = 10 ergscm 3.
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plasma and y-rays. The collimation process must simulta-
neously be incorporated, e.g., because of the pinching effect
of magnetic field and/or due to external confining force of
the wind from the disk.

In this paper, we have assumed that all the e*s at x move
with the same Lorentz factor I'(x). However, it may be
debatable whether we can neglect the existence of nonrela-
tivistic e*s. That is, freshly produced e*s (or e”s) having
momenta in the opposite (same) direction of E | are deceler-
ated to turn back in very short lengths. Such nonrelativistic
e*s that turn back may not be negligible in the Maxwell
equation (7) because of their small velocity. For example, at
x>0, freshly produced e*s have preferentially positive
momenta, because the y-ray flux in the + x-direction
exceeds that in the — x-direction. As a result, nonrelativistic
e~ s, which are turning back, may dominate nonrelativistic
e”s to enhance the screening of E;. This is because the
density of the nonrelativistic e s appears as a negative term
in the Maxwell equation to contribute in the same sense as
—Ax term at x > 0. Such an effect is actually negligible in
the central reglon of the gap where E| is large, because the
nonrelativistic e*s turn back so quickly that their density
could not overcome that of relativistic e*s. However, the
existence of nonrelativistic e*s may become significant
close to the boundaries (x~ + H), because the small electric
field E | there increases the length of turning back and hence
the density of nonrelativistic particles. Therefore, taking
account of nonrelativistic e*s may alter the boundary struc-
ture and reduce the gap width to some extent. However, the

essential features of pair production cascade will not be lost
in disregard of nonrelativistic e*s, because the cascade is
mainly governed by the gap structure where E | is sufficient-
ly large. Nonrelativistic e*s may induce space-charge-
density waves outside the boundary (Shibata 1997) and may
become important when we consider the problem how to
embed the potential gap in a Goldreich-Julian flow.

It might finally be interesting to investigate whether or
not the same mechanism works around a stellar-mass black
hole, from which the rotational energy may be extracted,
resulting in a galactic y-ray jet (cf. Levinson & Blandford
1996). Around a supermassive black hole, which is the
concern of this paper, the relaxation length lyrag> at which
e*s lose their perpendicular momenta owing to scatterings
with background UV photons is much smaller than [, [,
and H. Therefore, particle motion and y-ray behavior can
be treated one-dimensionally; in addition, electron/positron
spectra are approximated by monoenergetic ones. However,
as Beskin et al. (1992) pointed out, around a stellar-mass
black hole, neither the drag due to background photons nor
the synchrotron loss cannot make the motion of e*s be
one-dimensional, because their mean free paths are much
larger than I, or H. This issue will be our next target.
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