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ABSTRACT
We have studied nonstationary and nonaxisymmetric perturbations of a magnetohydrodynamic accre-

tion onto a rotating (Kerr) black hole. Assuming that the magnetic Ðeld dominates the plasma accretion,
we Ðnd that the accretion su†ers a large radial acceleration resulting from the Lorentz force and
becomes highly variable compared with the electromagnetic Ðeld on the rotating black hole. In fact, we
further Ðnd an interesting perturbed structure of the plasma velocity with a large peak in some narrow
region located slightly inside of the fast-magnetosonic surface. This is due to the concentrated propaga-
tion of the Ñuid disturbances in the form of fast-magnetosonic waves along the separatrix surface. If the
fast-magnetosonic speed is smaller in the polar regions than in the equatorial regions, the critical surface
has a prolate shape for radial poloidal Ðeld lines. In this case, only the waves that propagate toward the
equator can escape from the super-fast-magnetosonic region and collimate poleward as they propagate
outward in the sub-fast-magnetosonic regions. We further discuss the capabilities of such collimated
waves in accelerating particles due to cyclotron resonance in an electron-positron plasma.
Subject headings : acceleration of particles È black hole physics È galaxies : active È MHD È relativity

1. INTRODUCTION

It is commonly accepted that extragalactic jets are inti-
mately linked with the accretion process onto supermassive
black holes residing in the central regions of active galactic
nuclei (AGNs). These jets are initially relativistic, as indi-
cated by superluminal proper motions of radio-emitting
knots (e.g., et al. and by high-energy, rapidlyWehler 1992)
variable c-ray emissions (e.g., Montigny et al.von 1995).
Moreover, Hubble Space Telescope studies of the base of the
M87 jet reveal a rotating gas disk apparently lying normal
to the jet direction et al. et al.(Ford 1994 ; Harms 1994).
Despite intense study, the underlying formation mechanism
is still uncertain. Nevertheless, hydrodynamic and magneto-
hydrodynamic (MHD) processes associated with the accre-
tion disk seem to be a promising candidate mechanism.

Possible Ñows of the energy conversion from the accre-
tion to a small fraction of gas in jets have been suggested by

& Sunyaev in the context of a thick super-Shakura (1973)
critical accretion disk which exhibits inÑow along the
equator and outÑow near the poles. If the radiation-
supported rotating gas adopts a hydrostatic toroidal con-
Ðguration, then a pair of funnels are deÐned which could be
responsible for the production of jets along the rotational
axis & Payne con-(Lynden-Bell 1978). Blandford (1982)
sidered a magnetized disk and showed that a gas leaves the
disk in a centrifugally driven wind, provided that the mag-
netic Ðeld makes an angle of less than 60¡ with the radius
vector at the disk. Furthermore, the MHD disturbances
produced at a galactic nucleus with a compact nuclear disk
would be strongly collimated poleward, resulting in jets, if
the Alfve� n velocity in the disk is much higher than its sur-
roundings Such a collimation would lead to(Sofue 1980).
an increase in the wave amplitude, resulting in shock waves
that are conjectured to develop into a strongly compressed
region of the magnetic Ðeld. In this region, high-energy par-
ticles are likely to be accelerated in the perpendicular direc-
tion to the equatorial nuclear disk.

The purpose here is to explore the issue whether MHD
waves can convey some portions of accretion energy to the

polar regions in the vicinity of a black hole. Causality
requires that the MHD inÑows should pass through the
fast-magnetosonic point and become super-fast-magneto-
sonic at the horizon. The investigation of the so-called criti-
cal condition that the inÑow should pass through this point
smoothly o†ers, in fact, the key to an understanding of
MHD interactions in a black hole magnetosphere.

The MHD interactions are expected to work most e†ec-
tively in the magnetically dominated limit in which the rest-
mass energy density of particles is negligible compared with
the magnetic energy density. In this limit, the fast-
magnetosonic point is located very close to the horizon (e.g.,

as a result, a general relativistic treatment isPhinney 1983) ;
required. Analyzing the critical condition in a stationary
and axisymmetric magnetically dominated black hole mag-
netosphere, et al. hereafter showedHirotani (1992, Paper I)
that roughly 10% of the rest-mass energy and a signiÐcant
fraction of the initial angular momentum are transported
from the Ñuid to the magnetic Ðeld during the infall. Fur-
thermore, if a small-amplitude perturbation is introduced
into the magnetosphere, a lot of perturbation energy is
deposited from the magnetic Ðeld to the Ñuid near the fast
surface in the short-wavelength limit ; accordingly, the
plasma accretion becomes highly variable Tomi-(Hirotani,
matsu, & Takahashi hereafter Subse-1993, Paper II).
quently, & Tomimatsu hereafterHirotani (1994, Paper III)
investigated the spatial structure of the disturbance in a
Schwarzschild metric by assuming that the characteristic
scale of the radial variations of perturbed quantities is com-
parable to that of unperturbed quantities instead of adopt-
ing the short-wavelength limit. They revealed that the
magnetically dominated accretion becomes most variable at
the fast-magnetosonic separatrix surface and that the large-
amplitude ÑuidÏs disturbance can escape into the sub-fast-
magnetosonic regions by propagating meridionally almost
along the separatrix. In this paper, we extend the analysis
performed in to a Kerr metric, further examinePaper III
the propagation of the escaped fast waves in the sub-fast
regions, and discuss the possibilities of particle acceleration

632



COLLIMATION OF MHD DISTURBANCES AROUND ROTATING BLACK HOLE 633

due to a collimation of such waves.
The outline of this paper is as follows. In we formulate° 2

nonstationary nonaxisymmetric perturbations of the MHD
accretion and derive the wave equation that describes the
perturbation. Solving the wave equations, we show in ° 3
that the Ñuid becomes mostly variable slightly inside the
fast surface, which is consistent with the results obtained in
Papers II and III. We further demonstrate that the dis-
turbances can escape into the sub-fast regions in the form of
fast waves by propagating toward the equator, provided
that the fast-magnetosonic speed is slower in the polarUFMregions than in the equatorial regions. In the escaped° 4
fast waves will be shown to collimate toward the rotational
axis under such a distribution of In we ÐnallyUFM. ° 5
discuss the capabilities of such collimated waves in the
acceleration of particles due to nonlinear interactions
between waves and electron-positron plasmas.

2. MAGNETICALLY DOMINATED ACCRETION

We will begin by considering basic equations describing a
magnetosphere around a rotating black hole. Since the self-
gravity of the electromagnetic Ðeld and plasma around a
black hole is very weak, the background geometry of the
magnetosphere is described by the Kerr metric,

ds2\*[ a2 sin2 h
&

dt2] 4Mar sin2 h
&

dtd/

[A sin2 h
&

d/2[&
*

dr2[ &dh2 , (1)

where *4 r2[ 2Mr ] a2, &4 r2] a2 cos2 h, A4
(r2] a2)2[ *a2 sin2 h, and a 4 J/M ; M is the mass of a
hole. Throughout this paper we use geometrized units such
that c\ G\ 1.

Under ideal MHD conditions, since the electric Ðeld van-
ishes in the Ñuid rest frame, we have whereFklUk \ 0, Fklis the electromagnetic Ðeld tensor satisfying Maxwell equa-
tions, and Uk is the Ñuid four-velocity. TheF*kl,o+\ 0,
motion of the Ñuid in the cold limit is governed by the
following equations of motion :

T kl
‰l\

C
knUkUl ] 1

4n
A
FkoFol ] 1

4
gklFabFab

BD
‰l

\ 0 , (2)

where the semicolon denotes a covariant derivative and k
the rest mass of a particle. For electron-proton plasmas, k
refers to a rest mass of a proton, whereas for electron-
positron plasmas, k refers to that of an electron (or a
positron). The proper number density n obeys the contin-
uity equation We adopt these basic equations(nUk)

‰k\ 0.
for a description of stationary and axisymmetric black hole
magnetospheres in and for an analysis of perturbed° 2.1
state in and afterward.° 2.2

2.1. Unperturbed Magnetosphere
From an analysis of the stationary and axisymmetric

ideal MHD equations, it is known that there exist four
integration constants that are conserved along each Ñow
line (e.g., & Oron CamenzindBekenstein 1978 ; 1986a,

These conserved quantities are the angular velocity1986b).
of a magnetic Ðeld line the particle Ñux per magnetic()

F
),

Ñux tube (g), the total energy (E), and the total angular

momentum (L ) per particle. They are deÐned as follows :

)
F
\ F

tr
F
rÕ

\ F
th

FhÕ
, (3)

g \ [J[gnUr

FhÕ
\ [J[gnUh

FÕr

\ [J[gn(UÕ[ )
F
Ut)

F
rh

, (4)

E4 kU
t
[ )

F
4ng

BÕ , (5)

and

L \ [kUÕ[ 1
4ng

BÕ , (6)

where the toroidal magnetic Ðeld is deÐned by(BÕ)

BÕ \ [ o
w
2

J[g
F

rh ; (7)

o
w
2 4 * sin2 h , J[g 4 & sin h . (8)

When holds, and thereby the holeÏs rota-0 \)
F
\)

Htional energy and angular momentum are extracted magne-
tohydrodynamically & Znajek(Blandford 1977 ; Phinney

both E and L become negative. A poloidal Ñow line is1983),
identical with a poloidal magnetic Ðeld line and is given by
((r, h) \ constant, where ( is the /-component of the
unperturbed electromagnetic vector potential. The con-
served quantities are functions of ( alone. In what follows,
we assume radial Ðeld lines, ( \ ((h).

We next describe a stationary plasma accretion in a black
hole magnetosphere. In a black hole magnetosphere there
are two light surfaces. One is called the outer light surface,
which is formed by centrifugal force in the same manner as
in pulsar models. The other is called the inner light surface,
which is formed by the gravity of the hole. In a region
between the horizon and the inner light surface, the plasma
must stream inward, while in a region beyond the outer
light surface it must stream outward. A plasma source in
which both inÑows and outÑows start with a low poloidal
velocity is located between these two light surfaces et(Nitta
al. the injection region of the accretion may1991) ; (r \ r

I
)

be a pair-creation zone above the disk Istomin, &(Beskin,
ParÏev & Okamoto or the disk surface1992 ; Hirotani 1998)
whose inner edge corresponds to the innermost stable circu-
lar orbit in a Kerr geometry. Along the magnetic Ðeld lines
the plasma inÑows pass through the Alfve� n point, the light
surface, and the fast-magnetosonic point suc-(r \ r

F
),

cessively ; they Ðnally reach the event horizon (r \ r
H
).

From now on we use the subscripts I, F, and H to indicate
that the quantities are to be evaluated at andr \ r

I
, r \ r

F
,

respectively. In a magnetically dominated magneto-r \ r
H
,

sphere, the fast-magnetosonic point is located very close
to the horizon (for explicit expressions for and seer

F
r
HPaper I).

2.2. Perturbed Magnetosphere
We next consider a small-amplitude nonaxisymmetric

perturbation superposed on the unperturbed state discussed
in the last subsection. In the perturbed state all perturbation
equations are solved self-consistently, including the trans-
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Ðeld equation. We wish to examine the behavior of Ñuid
quantities (energy, angular momentum, and poloidal
velocity) in response to small variations in the magnetic
Ðeld at various points in the magnetosphere, especially at
the fast point.

Let the actual poloidal component of the electric and
magnetic Ðelds, as a result of the disturbance, be E

A
] e

Aand (A\ r, h), respectively ; the small lettersB
A

] b
A

(e
r
, eh,and are the Eulerian perturbations of the correspond-b

r
, bh)ing quantities. Let and denote perturbations ofeÕ bÕ F

tÕand respectively. Furthermore, we introduce ur[J[gFrh,
and uh such that the actual component of the poloidal Ñuid
velocity Ðeld, as a result of the disturbance, becomes
UA ] uA. Let and be the Eulerian perturbations ofu

t
[uÕÑuid energy and angular momentum per unit mass, respec-

tively.
Recalling that for radial Ðeld lines,L

r
( \ Uh \ Bh \ 0

and making use of equation (4), we can simplify the t, /
components of the frozen-in conditions as follows :

Ure
r
] )

F
(h uh ] UÕeÕ \ 0 , (9)

[UteÕ] UrJ[gbh [ (h uh \ 0 . (10)

The h-component of the frozen-in condition is a little
bit complicated. To take account of cancellations in the
*-expansion, we combine with the h-componentUkuk \ 0
of the frozen-in condition. We then obtain

1
o
w
2 (G1eh]G2J[gbr)]g

rr
ghhUr

bÕ
J[g

] v
k

(h
G1

uÕ

] J[gBÕ[(v/k)UÕ[ (g
tÕ] gÕÕ )

F
)]

(G1)
F
] G2)G1

ur\ 0 , (11)

where

G14 gÕÕU
t
[ g

tÕ UÕ , (12)

G24 [g
tt
UÕ] g

tÕ U
t
. (13)

Since we are concerned with MHD interactions near to
the fast surface located very close to the horizon, we evalu-
ate unperturbed quantities appearing in the perturbed
equations in the vicinity of the horizon (*> M2). Then
equation reduces to(11)

2Mr
H

&
H

sin2 h
*

(U
H
r )2
C2Mr

H
&
H

h ] bÕ
sin h

D
] v

k
(h uÕ

[ (h
U

H
r

Cv
k

UÕH] ()
H

[ )
F
)gÕÕH
D
ur\ 0 , (14)

where

v4 E[ )
F
L , (15)

h 4 eh[ )
H
J[gbr ; (16)

is the holeÏs rotational angular frequency and is deÐned)
Hby

)
H

4 [g
tÕH/gÕÕH \ [g

tt
H/g

tÕH . (17)

Here use has been made of the fact that unperturbed Ñuid
velocity is related to Ñuid energy and angularU

H
r U

t
H

momentum according to[UÕH (Paper I)

U
H
r \ [2Mr

H
&
H

(U
t
H] )

H
UÕH) ] O

A *
M2
B

. (18)

and hence and are of order unity. The explicitU
H
r U

t
H [UÕHexpressions for these quantities are given in Paper I.

If we assume that the characteristic scales of meridional
variations in the perturbed state are much shorter than
those in the unperturbed state, the perturbation equations
reduce signiÐcantly. For nonaxisymmetric perturbations,
all perturbed quantities may therefore be assumed to be
proportional to whereexp (iut[ ikh h[ im/), kh ? 1.
Under this approximation, we obtain from the homoge-
neous part of Maxwell equations

imbÕ] * sin2 h
A
[ikh bh ] 2Mr

H
*

dbr

dr
*

B
\ 0 , (19)

2Mr
H

*
deÕ
dr

*
] ime

r
] iuJ[gbh \ 0 , (20)

ikh e
r
] 2Mr

H
*

deh
dr

*
] iu

&
H

* sin h
bÕ\ 0 , (21)

where is the tortoise coordinate deÐned byr
*

dr
*

dr
4

r2] a2
*

. (22)

It is convenient to introduce this coordinate when we
describe waves near to the horizon because the interval

O) in the r-coordinate is stretched to ([O, O) in(r
H
, r

*
.

We assume that the characteristic scale of the radial varia-
tions is comparable to that of the gravitational Ðeld, that is,

where f denotes some perturbed quantity. Indf/dr
*

B f/M,
this paper we do not take the short-wavelength limit

which was adopted in(df/dr
*

? f/M) Paper II.
Eliminating uh from equations and we obtain a(9) (10),

relation between bh, and Combining this relation withe
r
, eÕ.

equation we can express and bh in terms of as(20), e
r

eÕfollows :

(u[ m)
F
)e

r
\ [i)

F
2Mr

H
*

AdeÕ
dr

*
] iu

)
H

[ )
F

)
F

eÕ
B

,

(23)

(u[ m)
F
)J[gbh \ i

2Mr
H

*
CdeÕ
dr

*
] im()

H
[ )

F
)eÕ
D

.

(24)

Substituting equation into equation we have(23) (21),

deh
dr

*
\ [ kh

u[ m)
F

C
)

F
deÕ
dr

*
] iu()

H
[ )

F
)eÕ
D

[iu
&
H

2Mr
H

bÕ
sin h

. (25)

In the same manner, equations and give(19) (24)

J[g
dbr

dr
*

\ [ kh
u[ m)

F

CdeÕ
dr

*
] im()

H
[ )

F
)eÕ
D

[im
&
H

2Mr
H

bÕ
sin h

. (26)

Equations express poloidal components of per-(23)È(26)
turbed electromagnetic Ðelds in terms of their toroidal com-
ponents.
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Let us next consider the equations of motion. First, the
deÐnition of proper time yields near the horizon,Ukuk \ 0
with the aid of equation (18),

ur \ [ 2Mr
H

&
H

(u
t
] )

H
vÕ) ] O

A *
M2
B

. (27)

Second, the t-component of the equation of motion gives

(knUk+k U
t
)(1)] f

t
(1) \ 0 ; (28)

in the vicinity of the horizon we have

(Uk+k U
t
)(1)\ 2Mr

H
*

U
H
r "u

t
, (29)

"\ [i(u[ m)
H
) ] d

dr
*

, (30)

f
t
(1)\ )

F
(h

4n&
H

2Mr
H

*
C
i(u[ m)

H
)
2Mr

H
&
H

h ] d
dr

*

A bÕ
sin h

BD
.

(31)

The superscript (1) indicates that the quantity is evaluated
in the perturbed state. In general, the a-component of the
Lorentz force is deÐned by

fa 4
Fak Ll(J[gFkl)

4nJ[g
. (32)

Setting a \ t, taking the linear order in the perturbation,
and evaluating in the vicinity of the horizon, we obtain
equation (31).

The perturbed ÑuidÏs density can be eliminated fromn1equation with the aid of the continuity equation(28)

U
H
r "
An1
n0

B
] H(u) \ 0 , (33)

where

H(u)4
dur

dr
*
] i(u[ m)

H
)
2Mr

H
&
H

(u
t
])

H
uÕ)[ ikh

*
2Mr

H
vh .

(34)

Operating " to both sides of equation and combining(33)
with equation to eliminate we obtain(28) n1,

kn0
C2Mr

H
*

U
H
r
A
[r

H
[ M

Mr
H

] "
B
u
t
[ (L

r
U

t
)H(u)

D

] "f
t
(1)\ 0 . (35)

In the same manner, from the /-component of the equa-
tion of motion, we obtain

kn0
C2Mr

H
*

U
H
r
A
[ rH [ M

Mr
H

] "
B
uÕ [ (L

r
UÕ)H(u)

D

] "f Õ(1)\ 0 , (36)

where

f Õ(1)\ [ 1
)

F
f
t
(1) ]O

A *
M2
B

. (37)

Finally, the h-component of the equation of motion
becomes

(knUk+kUh)(1)] fh(1)\ 0 , (38)

where

f h(1)\ [ 2Mr
H

4n* sin h
GA2Mr

H
&

H

B2
()

H
[ )

F
)(h

]
C
"(e

r
] )

H
J[gbh) [ ikh

2Mr
H

h
D

[ ikh
2Mr

H
BÕ

bÕ
sin h

[ i
u[ m)

F
2Mr

H

(h
sin h

eÕ
H

. (39)

Eliminating with the aid of equation taking then1 (33),
leading orders in the *-expansion, and considering relative
amplitude between perturbed quantities together with the
dispersion relation for the outgoing fast-magnetosonic
mode we can self-consistently neglect Ñuid con-(Paper II),
tributions in equation to obtain(38)

"f (1)h \ 0 . (40)

Using equations we can rewrite equation(14), (23), (24),
as(40)

(2Mr
H
)2

*&
H

)
H

[ )
F

u[ m)
F

A
[r

H
[ M

Mr
H

] "
B
"eÕ

[ kh
2Mr

H

A2Mr
H

&
H

h ] bÕ
sin h

B
\ 0 . (41)

We analyze a system that is formed by 10 equations (eqs.
and in 10 unknown[10], [14], [23]È[27], [35], [36], [41])

functions (br, bh, ur, uh, and The per-e
r
, eh, bÕ, eÕ, u

t
, uÕ).turbed Ñuid density would be calculated if we solved the

perturbed continuity equation. These 10 equations give
some relations between two arbitrary perturbed quantities
and are further combined into a single di†erential equation.

Substituting equation into equation we obtain(24) (10),

(u[ m)
F
)(h uh \ i

2Mr
H

*
U

H
r "eÕ . (42)

We can use this equation to eliminate uh and examine the
relative amplitude between uh and eÕ.

One combination of equations and yields, with(35) (36)
the aid of equation (27),

)
F
(h

k
E

"ur \ [i(u[ m)
H
)
2Mr

H
&
H

h [ d
dr

*

A bÕ
sin h

B
. (43)

Here, use has been made of the fact that the unperturbed
Ñuid quantity

U
t
] )UÕ\ v

k
4

E[ )
F
L

k
(44)

is constant along each Ñow line. The other combination of
equations and yields(35) (36)

u
t
\ [)

F
uÕ] O(*/M2) . (45)
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Using equations and we can eliminate in(27) (45), uÕequation to obtain(14)

[K
I
[ K

H
)

H
[ )

F
(h ur \&

H
*

(U
H
r )32Mr

H
sin2 h

]
C2Mr

H
&
H

h ] bÕ
sin h

D
, (46)

where the e†ective potential K is deÐned by et(Takahashi
al. 1990)

K 4 g
tt
] 2g

tÕ)
F
] gÕÕ )

F
2 . (47)

At the injection point where Ur vanishes, K takes a positive
value, whereas at the horizon we have K \K

I
\ (v/k)2,

Moreover, equations andK
H

\ gÕÕH ()
H

[ )
F
)2\ 0. (25)

give(26)
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*
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H
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F
)kh
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F

"eÕ[ i(u[ m)H)
&
H

2Mr
H

bÕ
sin h

.

(48)

So far we have obtained four independent equations,
equations and for four unknowns, ur,(41), (43), (46), (48),

and Combining these fourh \ eh [ )
H
J[gbr, eÕ, bÕ.equations, we Ðnally obtain the wave equation

G
(*[ *

F
)

d2
dr

*
2

]
Cr

H
[ M

Mr
H

(*] *
F
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H
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F
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H
)
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H
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H
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H
)
D
(*] *

F
)

[
GA *

2Mr
H
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H
ur \ 0 , (49)

where is given by*
F

(Paper I)

*
F
\ 2Mr

H
&

H
sin2 h)

F
()

H
[ )

F
)(U

H
r )3

K
I
[ K

H

k
E

. (50)

Introducing a new nondimensional radial coordinate as

x 4
*
&

(51)

and recovering meridional derivatives by setting kh \ iLh,we can rewrite equation as(49)

x2(x [ x
F
)
L2ur

Lx2 ] 2x(x ] ipx
F
)
Lur

Lx

]
C
[ip(1 ] ip)(x ] x

F
) ] &

H
x2

4(r
H

[ M)2
L2
Lh2
D
ur\ 0 . (52)

where nondimensional corotational frequency p is deÐned
by

p 4 (u[ m)
H
)

Mr
H

r
H

[ M
. (53)

Equation becomes elliptic in the sub-fast region (x [(52)
while it becomes hyperbolic in the super-fast regionx

F
),

(x \x
F
).

From equations and we can see that the ÑuidÏs(27) (45),
energy and angular momentum obey the same(u

t
) ([uÕ)equation as equation Therefore, equation describes(52). (52)

the ÑuidÏs disturbance near the horizon. In the slowly rotat-
ing limit (a ] 0), equations reduce to equation (25)(51)È(53)
in in which axisymmetric (m\ 0) perturbationsPaper III,
in a Schwarzschild metric were examined.

3. HIGHLY VARIABLE ACCRETION

To examine the spatial structure of ur(x, h), let us rewrite
equation as(52)

CA
[1 [ ip ] x

L
Lx
B
DFM] &

H
x2

4(r
H

[ M)2
L2
Lh2
D

\ 0 , (54)

where refers to the di†erential operator associated withDFMthe outgoing fast-magnetosonic mode and is deÐned by

DFM4 x(x [ x
F
)

L
Lx

] ip(x ] x
F
) ] x . (55)

Let us examine the radial (x) dependence of ur by neglecting
the h-derivative term as a Ðrst step. Under this assumption,
the ingoing and the outgoing modes in equation can be(54)
completely separated. Equation gives a solution(DFM ur \ 0
corresponding to the outgoing mode,

ur \ C1
xip

[x [ x
F
(h)]1`2ip , (56)

where is an integration constant. In order that the right-C1hand side may not diverge at the real part ofx \ x
F
(h),

1 ] 2ip should be nonpositive ; this indicates that outgoing
radial waves must decay because no steady supply of per-
turbation energy across the fast surface is pos-x \ x

F
(h)

sible. In this paper we postulate a steady excitation of
perturbation induced by plasma injection from the equato-
rial disk or a pair production zone above the disk. It
requires that p should be real. Then, to avoid divergence at

we must consider the h-derivative term in equationx \x
F
,

at least near the fast surface.(54)
Let us modify the solution in equation into the form(56)

ur \ C1
xip

[x [ x
F
(h)] d(h)]1`2ip , (57)

where d should be a complex function of h, so that we may
obtain a regular solution ur for real p. Inserting equation

into equation and evaluating the equation in the(57) (54)
limit we obtain a nonlinear Ðrst-o (x[ x

F
] v)/x

F
o> 1,

order di†erential equation for d,

d \
Adx

F
dh

[ dd
dh
B2

. (58)

As boundary conditions, we impose the following symmetry
conditions :

d Re (d)
dh

\ d Im (d)
dh

\ 0 at h \ 0 , (59)

d Re (d)
dh

\ d Im (d)
dh

\ 0 at h \n
2

. (60)

As an example, numerical solutions satisfying these condi-
tions for (i.e., prolate shape of thex

F
\ 0.1 cos2 h ] 0.01
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FIG. 1.ÈVariation of the real part of d as a function of h. The dashed
line, which plots 0.01 sin2 2h, is depicted for comparison (see text).

fast surface) are depicted in Figures and In1 2. Figure 1
which approximatelyRe (d) \ (dx

F
/dh)2\ 0.01 sin2 (2h),

satisÐes equation when (i.e., at h B n/4), is(58) d2x
F
/dh2B 0

depicted by the dashed line for comparison. It should be
noted that the maximum-amplitude surfaces, x \x

F
[

Re (d), where ur has a sharp peak, is located slightly within
the fast surface and that Re (d) is of order ofx \x

FIt follows that in a magnetically dominated mag-(dx
F
/dh)2.

netosphere, which satisÐes the maximum-dx
F
/dh > 1,

amplitude surface is located slightly inside of the fast
surface. For example, if the magnetic Ðeld energy density is
about 10 times larger than that of the plasmas in the sense
that we obtaindx

F
/dh B 0.1, r

F
[ rmaxB 0.1r

F
B 0.01r

H
,

where and refer to the values of the r-coordinate atr
F

rmaxthe fast and maximum-amplitude surfaces, respectively.
What is most important here is that this maximum-

amplitude surface coincides with the separatrix of charac-
teristics. To see this, it is convenient to introduce a new
radial coordinate m that denotes a deviation from the
maximum-amplitude surface,

m 4 x [ x
F
] Re (d) . (61)

The characteristics of equation are expressed as(54)

dx
dh

\ < Jx
F
(h) [ x B

1
2
Adx

F
dh
B2

, (62)

which indicates that the characteristics are almost merid-
ional on the poloidal plane very close to the fast surface, or

FIG. 2.ÈLogarithmic variation of [Im (d)]~1 as a function of h

equivalently very close to the maximum-amplitude surface.
In the super-fast region, any waves must propagate inward,
dx \ 0. Therefore, waves propagating to lower latitudes
(dh [ 0) are indicated by the upper sign, while those to
higher latitudes are indicated by the lower sign. Combining
equations and we obtain an equation express-(58), (61), (62),
ing how a characteristic deviates from the maximum-
amplitude surface,

dm
dh

\ < JRe (d) [ m [ dx
F
/dh

o dx
F
/dh o

JRe (d) . (63)

It follows that for a prolate shape of the fast surface
dm has the same sign as m for waves propagat-(dx

F
/dh \ 0),

ing to lower latitudes (dh [ 0, upper sign). In other words,
outside of the maximum-amplitude surface, characteristics
deviate from this surface outward, whereas inside of this
surface, they deviate inward. Poleward propagating waves
(dh \ 0, lower sign), on the other hand, always deviate
inward (dm \ 0) to be swallowed by the hole. That is, only
waves propagating toward the equator can escape into sub-
fast regions, if the fast surface is prolate Thus we can(Fig. 3).
regard the maximum-amplitude surface as the separatrix of
characteristics. The same discussion could be applied for a
oblate shape of the fast surface.

Since Ñuid obtains most of its perturbation energy from
the electromagnetic Ðeld at the maximum-amplitude
surface, m \ 0, most of the ÑuidÏs disturbance propagates
almost along the separatrix (i.e., the maximum-amplitude
surface) and at last deviates inward or outward. In other
words, meridional propagation is essential to examine the
spatial structure of Ñuid disturbance near the fast surface.

FIG. 3.ÈSchematic Ðgure (side view) of a black hole magnetosphere.
The thick solid curves denote the characteristics of eq. The fast-(62).
magnetosonic separatrix surface is denoted by the dashed line. The mag-
netic Ðeld lines are not drawn, in order to avoid complication. The super
fast region is very thin in the magnetically dominated limit ; however, the
width of this region is exaggerated for the purpose of illustration.
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As a result of the deviation of waves, 1/Im (d), and hence
Ñuid amplitude, rapidly decreases with h as indicated in

for a prolate shape of the fast surface. We canFigure 2
quantitatively understand this behavior by considering an
approximate solution

Im (d) P exp
A
[ 1

2
P
0

h Cdx
F

dh
D
dh
B

, (64)

which is applicable when Equation indi-d2x
F
/dh2B 0. (64)

cates that Im (d) decreases exponentially as h decreases.
Let us Ðnally consider the relation of amplitude among

various perturbed quantities. Combining equations present-
ed in the last section, we obtain near the fast point

e
r

Eh/M
,

bh
Br

, uhB
Sk

E
ur > ur (65)

in order of magnitude because of Otherk
M

BJE/kk
r*

.
electromagnetic quantities have much smaller amplitude
near the fast surface. It is interesting to note that the equi-
partition of energy is achieved near the([e

r
]2B kn[ur]2)

fast surface, although the perturbation energy is supplied
mainly in the form of electromagnetic disturbances ([e

r
]2B

[E/k]kn[ur]2? kn[ur]2) far from the horizon. In other
words, a lot of perturbation energy is deposited from the
electromagnetic Ðeld to the Ñuid during the infall as a result
of e†ective MHD interactions. In a realistic magnetically
dominated black hole magnetosphere, the Ñuid becomes
highly variable ([ur]2B [Ur]2) near the fast surface for a
very small input of perturbation energy ([e

r
]2B

from the surroundings. The existence of the[k/E][Eh/M]2)
horizon is essential to make the Ñuid be highly variable near
the fast surface (Papers I and II). If the fast surface is located
far from the hole, Ñuid quantities does not become highly
variable.

So far, we have derived the following conclusions :

1. The Ñuid quantities become highly variable near the
fast surface owing to MHD interactions near the horizon.

2. Their amplitude is a peaking function at the separatrix
surface located slightly inside the fast surface. This is
because a large-amplitude Ñuid disturbance propagates
along the separatrix as an outgoing fast wave.

3. For the prolate shape of the fast surface, for instance,
the fast waves that propagate toward the equator can reach
the fast surface and escape to the sub-fast region. These
results drive us to the question of how these fast waves
propagate in the subfast regions. In the next section we will
be concerned with this issue.

4. WAVE PROPAGATION IN SUB-FAST REGION

4.1. Geometrical Optics in Relativistic Accretion
As we have seen, meridional wavelength is much less than

the radius of curvature near the fast surface. It follows that
the propagation of wave packets of fast-magnetosonic
mode follows the laws of geometric optics. In geometric
optics, the nature of the second-order partial di†erential
equations that describe the propagation can be well studied
by the characteristic hypersurfaces of the system. The char-
acteristic hypersurfaces, which play the role of wavefronts,
can be expressed by a surface of t(xk) \ constant, where t
satisÐes the following eikonal equation in the cold limit

see also et al. for(Lichnerowicz 1967 ; Takahashi 1990
sound waves, and for MHD waves in theUchida 1997

force-free limit) :

H 4 sabt,a t,b \ 0 , (66)

where sab is deÐned by

sab 4 gab ]UaUb
UFM2

; (67)

is the fast magnetosonic speed in dq basis and is deÐnedUFMby

UFM2 4
KB

p
2] BÕ2/ow

2
4nkn

\KI [ K
4nkg

Br

Ur
. (68)

The Ðrst term in equation describes the inÑuence of the(67)
gravitational Ðeld, while the second term describes that of
the cold, relativistic MHD Ñows. If we were to replace t,awith we would obtain the dispersion relation for theka,fast-magnetosonic mode,

(Ukkk)2] UFM2 kkkk\ 0 . (69)

Instead of solving the partial di†erential equation we(66),
can investigate the trajectories of wave packets by solving a
set of the following ordinary di†erential equations :

dxa
dj

\ LH(xb, pb)
Lpa

, (70)

dpa
dj

\ [ LH(xb, pb)
Lxa

, (71)

where j is the parameter along a ray path. Since the Hamil-
tonian H contains neither t nor /, both wave frequency

and azimuthal wavenumber are con-u\P
t

m\[PÕserved along a ray path.
The unperturbed ÑuidÏs velocity Ðeld on which the wave

packets propagate must be solved consistently with the
equations of motion. First, the deÐnition of proper time
gives the poloidal wind equation

g
rr
(Ur)2] 1 \ [ gÕÕ(Ut

)2[ 2g
tÕU

t
UÕ] g

tt
(U

t
)2

o
w
2 . (72)

Second, combining the unperturbed continuity equation,
the Maxwell equations, and the frozen-in conditions with
equations and we obtain(5) (6), (Camenzind 1986b)

kU
t
\ (g

tt
] g

tÕ)
F
)v[M2E

K [M2 , (73)

kUÕ\ (g
tÕ] gÕÕ)

F
)v]M2L

K [M2 , (74)

where the Alfve� nic Mach number M is deÐned as

M24
4nkg2

n
\ 4nkg

Br
Ur . (75)

We assume an appropriate functional form for Br instead of
solving for the unperturbed trans-Ðeld equation.

Equations together with equation give the(72)È(74), (75),
ÑuidÏs velocity Ðeld Ur, on the poloidal plane. We(U

t
, [UÕ)assume that the accretion along each radial Ðeld line starts

from the point at which K becomes 0.55. This condition
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deÐnes a nearly spherical (but somewhat oblate) injection
surface of accretion at for a mildly rotating holer

I
B 5M

(a B 0.5M). We suppose that there is no Ñow of plasmas
outside the injection surface. This assumption alters the
propagation of the fast waves negligibly because plasma
Ñow in the region 5M \ r \ 10M is nonrelativistic, whereas
the fast-magnetosonic speed in dt basis is slightly smaller
than that of light. We further assume that the energy density
of the magnetic Ðeld is 9 times larger than that of the ÑuidÏs
rest mass in the sense that E/(k sin2 h) \ [10.

In this section we trace the ray paths of the fast-
magnetosonic wave packets radiated meridionally with
momentum from the fast-magnetosonico k

M
oB JE/ko k

r*
o

surface rather than those radiated spherically (i.e., in all
directions) by solving equations and in the mag-(70) (71)
netically dominated accretion described by equations
(72)È(74).

4.2. Collimation of MHD W aves
Let us Ðrst demonstrate typical results when the fast-

magnetosonic speed, is slower in polar regions than inUFM,
equatorial regions. Such a distribution of will be rea-UFMlized when Br is smaller in the polar regions. A good
example of such a magnetic Ðeld was presented by

& Znajek they solved the vacuumBlandford (1977) ;
Maxwell equations in a Kerr spacetime and derived a split
monopole Ðeld, sin h ] O(a2/M2) for a distributionBr \ B0of a toroidal surface current density of IP r~2. SpeciÐcally,
we assume that Br/(4nkg) \ ([E/k sin2 h)(1[ 0.8 cos h)2
in this paper and calculate along a ray path by solvingUFMequation In this case, g becomes larger in the polar(68).
regions ; therefore, the distribution of the fast surface
(Paper I)

r
F
[ r

H
r
H

\ n&
H
2

(r
H

[ M)Mr
H

A1(h)kg , (76)

becomes prolate. Here, the function is of order of unityA1(h)
and has a weak dependence on h as

A14
JK

I
[ K

(1 [ a)
H

sin2 h)(1[ a)
F

sin2 h)3W 3 , (77)

where W is a function of h and of order of unity. For radial
distribution of Ðeld lines, W 2 becomes

W 24 1 ] 2ar
H
()

H
[ )

F
) sin2 h

(r
H

[ M)(1[ a)
H

sin2 h)(1[ a)
F

sin2 h)
.

(78)

The information on the injection point of accretion appears
only through K

I
\ 0.55.

Using the unperturbed ÑuidÏs velocity Ðeld described by
equations and utilizing the fact that the fast wave(72)È(75)
packets are radiated meridionally at the fast surface (eq.

we can solve equations and to obtain the ray[76]), (70) (71)
paths of axisymmetric waves All the wave packets(Fig. 4).
are radiated from 0 \ h \ n/2 (the Ðrst quadrant) in this
Ðgure. Even though the wave packets have no angular
momenta (m\ 0), they have nonzero angular velocities
because of the spacetime dragging and the rotational
motion of the accretion Ñow. Therefore, the ray paths are
projected on their instantaneous poloidal plane and are
depicted in the Ðgure. Since is smaller in higher lati-UFMtudes, the fast surface becomes prolate ; thus, the waves that

FIG. 4.ÈSide view of ray paths of fast-magnetosonic wave packets in a
magnetically dominated accretion Ñow around a mildly rotating black
hole of a \ 0.5M. Ray paths are radiated meridionally from the fast surface
every in the Ðrst quadrant. The dotted curves denote ray paths radiated2¡.5
from the high latitudes (between 5¡ and 30¡). The solid curves denote paths
from the middle latitudes (between and 60¡), while the dashed curves32¡.5
denote paths from the low latitudes (between and Fast-62¡.5 87¡.5).
magnetosonic speed is lower in the polar regions than in the equatorial
regions. As a result, fast waves collimate toward the rotation axis.

propagate toward the equator can escape into the sub-fast
regions. As a result, the wave packets radiated from the Ðrst
quadrant propagate clockwise, as depicted in this Ðgure.
Because of the accretion, waves are pushed backward to the
hole and then revolve around it. The heavy solid line on the
equatorial plane denotes a dense disk which possibly resides
around an active hole. If a wave packet collides with the
disk, it will be totally absorbed to heat the plasma there.

This Ðgure indicates that most of the wave packets, which
are radiated meridionally from the fast surface, collimate
into the polar regions where is small. We may recall thatUFMall the fast waves radiated in the super-fast regions have
predominantly meridional momenta along the character-
istics described by equation We can qualitatively(62).
understand this behavior if we compare Figures and4 6.

Let us brieÑy demonstrate that the same results of colli-
mation are qualitatively obtained for nonaxisymmetric
waves. In m\ 2, 4, 6, 8, and 10 waves are depicted.Figure 5,
Ray paths in the Ðrst and the fourth quadrant originate at
h \ 30¡, whereas those in the second and the third quadrant
originate at h \ [45¡ (in the second quadrant). Wave
packets with negative angular momentum (m\ 0) are
not drawn because they are soon swallowed by the hole.
As the Ðgure indicates, nonaxisymmetric waves cannot
reach the rotational axis because of their nonzero angular
momenta ; therefore, the tendency of collimation is some-
what weakened compared with m\ 0 modes depicted in
Figure 4.

In we discuss that the collimated waves may experi-° 5
ence resonance and mode-convert themselves into electro-
magnetic waves to result in a particle acceleration by
nonlinear interactions. Before we come to this issue, one
more point must be clariÐed : if is larger in the polarUFM
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FIG. 5.ÈSide view of the ray paths of nonaxisymmetric mode. The solid
lines denote the m\ 2 mode, while the dashed, dash-dotted, dotted, and
dash-dot-dot-dotted lines denote m\ 4, 6, 8, and 10 modes, respectively.
Waves propagating in the right hemisphere are radiated meridionally at
h \ 30¡, whereas those in the left hemisphere are radiated at h \ [45¡.

regions than in the equatorial regions, ray paths must be
bent toward the equatorial plane. We examine this case
brieÑy in the next subsection.

4.3. Formation of a Focal Ring
We demonstrate here typical results when the fast magne-

tosonic speed is faster in the polar regions than in theUFMequatorial regions. In this case the distribution of the fast
surface becomes oblate. Examples of ray paths for axisym-
metric modes (m\ 0) are presented in All theFigure 6.

FIG. 6.ÈSame as except the fast-magnetosonic speed is slower inFig. 4,
the equatorial regions than in the polar regions. As a result, fast waves are
bent toward the equatorial plane to form a focal ring.

wave packets are radiated from 0\ h \ n/2 (the Ðrst
quadrant) in this Ðgure. Since the fast surface is oblate, the
wave packets that propagate initially toward the rotational
axis can escape into the sub-fast regions. Therefore, the
waves propagate counterclockwise.

This Ðgure indicates that most of the wave packets are
bent toward the equatorial disk to form a focal ring of
radius D5M and do not collimate toward the rotational
axis. For nonaxisymmetric waves, this tendency is strength-
ened because of their nonzero angular momenta.

The conclusions derived in this section seemingly contra-
dict those of Nevertheless, this seeming contra-Paper III.
diction can be understood as follows : When is faster inUFMthe polar regions than in the equatorial regions, ray paths
have poleward initial momenta in the super-fast regions ;
this is one of the main conclusions of However, asPaper III.
the waves propagate in the sub-fast regions, they are prefer-
encially bent to the equator, as demonstrated in this sub-
section.

5. DISCUSSION

We have demonstrated that the magnetically dominated
plasma accretion becomes highly variable near the fast
surface located close to the horizon and that such ÑuidÏs
disturbance propagates as a fast-magnetosonic wave and
collimates toward the rotational axis (especially for an
axisymmetric mode) when the fast-magnetosonic speed is
slower in the polar regions than in the equatorial regions. In
the framework of MHD, the collimated fast waves will not
cause interesting phenomena such as particle acceleration,
even in nonlinear regimes. However, if we take the e†ects of
plasma oscillation and cyclotron motion of particles into
account, interesting results, such as particle acceleration at
a resonant point, may be obtained & Tajima(Holcomb

& Tajima For this reason, we consider1992 ; Daniel 1997).
in this section a plasma wave in a pure electron-positron
plasma (for observational and theoretical discussion on the
existence of electron-positron plasmas in AGN jets, see

et al. Liu, & WangGhisellini 1992, Morrison, 1992, Xie,
Liu, & Wang and et al.1995, Reynolds 1996).

In a pure electron-positron plasma, the dispersion rela-
tion that describes a compressional Alfve� n mode (fast mode)
in the limit is generally given byu>)

e
, u

p
,

k2\ u2(u2[ )
e
2[ 2u

p
2)

c2(u2[ )
e
2) , (79)

where the plasma and cyclotron frequencies are deÐned by

u
p
4 J4nne2/m

e
, (80)

)
e
4

eBr

m
e
c

. (81)

In deÐnition of use has been made of the fact that the(81),
magnetic Ðeld has only a radial component (Br) near the
rotational axis because the toroidal component is negligibly
small compared to Br present there. We need scarcely add
that geometrical corrections due to holeÏs gravity are not
important in deÐnitions of equations and because(80) (81)
such corrections become small at the height where r [ 10M.

From the dispersion relation (eq. it follows that a[79]),
compressional Alfve� n mode exists for frequencies less than

(the resonance frequency), while another mode exists for)
efrequencies greater than (the cuto†()

e
2] 2u

p
2)1@2
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frequency). The latter mode has a phase velocity that tends
to c when (However, polarity di†ers from theu?u

p
, )

e
.

light mode.)
It is especially important to note that the point of cuto† is

located slightly outside the point of resonance in a magneti-
cally dominated magnetosphere i.e.,(m

e
n
e
c2> B2/8n, u

p
>

because Br and hence will decrease with increasing r.)
e
), )

eTherefore, we can depict the following scenario according
to a compressional Alfve� n wave packet isBudden (1961) :
injected outward by the mechanism described in the preced-
ing sections. As the wave packet approaches the point of
resonance (a magnetic beach), it increases the amplitude
owing to a nonlinear e†ect. After reaching the point of reso-
nance, it evanesces through the thin evanescent region to
transmit above the point of cuto†.

As indicates, the wave packets propagate nearlyFigure 4
radially on the poloidal plane. As a result, k becomes paral-
lel to B near the rotational axis because both of them have

no toroidal component. It is therefore interesting to note
that an axisymmetric compressional Alfve� n mode (fast
mode) has exactly the same dispersion relation as a shear
Alfve� n mode. According to nonlinear simulations of the
propagation of shear Alfve� n waves in a pure electron-
positron plasma & Tajima in which a very(Daniel 1997),
thin evanescent layer corresponding to a magnetic domin-
ance of is adopted, particle accelerationB2/8n D 9n

e
m

e
c2

up to energies of can be realized at the point of8m
e
c2

resonance if the injected wave is highly nonlinear. On these
grounds, we can anticipate that the process of wave colli-
mation demonstrated in this paper triggers initial acceler-
ation of jet due to a cyclotron resonance in an
electron-positron plasma.

Thanks are due to A. Tomimatsu, K. Shibata, T. Tajima,
and M. Takahashi for valuable advice and helpful sugges-
tions.
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